MRI‐Based Kinetic Heterogeneity Evaluation in the Accurate Access of Axillary Lymph Node Status in Breast Cancer Using a Hybrid CNN‐RNN Model

磁共振成像 乳腺癌 接收机工作特性 乳房磁振造影 医学 淋巴结 列线图 转移 比例危险模型 放射科 核医学 癌症 肿瘤科 内科学 乳腺摄影术
作者
Yi‐Jun Guo,Rui Yin,Qian Zhang,Junqi Han,Zhaoxiang Dou,Pengbo Wang,Hong Lu,Pei‐Fang Liu,Jingjing Chen,Wenjuan Ma
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:1
标识
DOI:10.1002/jmri.29225
摘要

Background Accurate evaluation of the axillary lymph node (ALN) status is needed for determining the treatment protocol for breast cancer (BC). The value of magnetic resonance imaging (MRI)‐based tumor heterogeneity in assessing ALN metastasis in BC is unclear. Purpose To assess the value of deep learning (DL)‐derived kinetic heterogeneity parameters based on BC dynamic contrast‐enhanced (DCE)‐MRI to infer the ALN status. Study Type Retrospective. Subjects 1256/539/153/115 patients in the training cohort, internal validation cohort, and external validation cohorts I and II, respectively. Field Strength/Sequence 1.5 T/3.0 T, non‐contrast T1‐weighted spin‐echo sequence imaging (T1WI), DCE‐T1WI, and diffusion‐weighted imaging. Assessment Clinical pathological and MRI semantic features were obtained by reviewing histopathology and MRI reports. The segmentation of the tumor lesion on the first phase of T1WI DCE‐MRI images was applied to other phases after registration. A DL architecture termed convolutional recurrent neural network (ConvRNN) was developed to generate the KH image (kinetic heterogeneity of DCE‐MRI image) score that indicated the ALN status in patients with BC. The model was trained and optimized on training and internal validation cohorts, tested on two external validation cohorts. We compared ConvRNN model with other 10 models and the subgroup analyses of tumor size, magnetic field strength, and molecular subtype were also evaluated. Statistical Tests Chi‐squared, Fisher's exact, Student's t , Mann–Whitney U tests, and receiver operating characteristics (ROC) analysis were performed. P < 0.05 was considered significant. Results The ConvRNN model achieved area under the curve (AUC) of 0.802 in the internal validation cohort and 0.785–0.806 in the external validation cohorts. The ConvRNN model could well evaluate the ALN status of the four molecular subtypes (AUC = 0.685–0.868). The patients with larger tumor sizes (>5 cm) were more susceptible to ALN metastasis with KH image scores of 0.527–0.827. Data Conclusion A ConvRNN model outperformed traditional models for determining the ALN status in patients with BC. Level of Evidence 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋季完成签到,获得积分10
1秒前
霸气梦菲完成签到 ,获得积分10
1秒前
霸气乐天发布了新的文献求助10
1秒前
烂漫的紫槐完成签到,获得积分10
2秒前
科研yu完成签到,获得积分10
2秒前
2秒前
胡志飞发布了新的文献求助10
3秒前
桃桃桃桃桃完成签到,获得积分10
4秒前
adkdad完成签到,获得积分10
4秒前
4秒前
祖问筠完成签到,获得积分10
4秒前
keke完成签到,获得积分10
6秒前
普萘洛尔完成签到 ,获得积分20
7秒前
周晶晶发布了新的文献求助10
10秒前
ww完成签到,获得积分10
11秒前
Zzz给Zzz的求助进行了留言
12秒前
12秒前
霸气乐天完成签到,获得积分10
12秒前
nglmy77完成签到 ,获得积分10
13秒前
13秒前
超级的冷松完成签到 ,获得积分10
13秒前
14秒前
明珠完成签到,获得积分10
14秒前
洋葱发布了新的文献求助10
14秒前
superbeier完成签到 ,获得积分10
15秒前
15秒前
15秒前
顾矜应助jby采纳,获得10
16秒前
mmyhn发布了新的文献求助10
17秒前
may完成签到,获得积分10
17秒前
18秒前
19秒前
zzt发布了新的文献求助10
19秒前
may发布了新的文献求助10
19秒前
灵犀完成签到,获得积分10
19秒前
20秒前
林林林林完成签到,获得积分10
20秒前
叶sir完成签到,获得积分20
21秒前
GXY完成签到,获得积分10
22秒前
等待戈多发布了新的文献求助10
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
The SAGE Handbook of Qualitative Research 800
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135113
求助须知:如何正确求助?哪些是违规求助? 2786095
关于积分的说明 7775189
捐赠科研通 2441915
什么是DOI,文献DOI怎么找? 1298256
科研通“疑难数据库(出版商)”最低求助积分说明 625108
版权声明 600839