已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MRI‐Based Kinetic Heterogeneity Evaluation in the Accurate Access of Axillary Lymph Node Status in Breast Cancer Using a Hybrid CNN‐RNN Model

磁共振成像 乳腺癌 接收机工作特性 乳房磁振造影 医学 淋巴结 列线图 转移 比例危险模型 放射科 核医学 癌症 肿瘤科 内科学 乳腺摄影术
作者
Yi‐Jun Guo,Rui Yin,Qian Zhang,Junqi Han,Zhaoxiang Dou,Pengbo Wang,Hong Lu,Pei‐Fang Liu,Jingjing Chen,Wenjuan Ma
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:1
标识
DOI:10.1002/jmri.29225
摘要

Background Accurate evaluation of the axillary lymph node (ALN) status is needed for determining the treatment protocol for breast cancer (BC). The value of magnetic resonance imaging (MRI)‐based tumor heterogeneity in assessing ALN metastasis in BC is unclear. Purpose To assess the value of deep learning (DL)‐derived kinetic heterogeneity parameters based on BC dynamic contrast‐enhanced (DCE)‐MRI to infer the ALN status. Study Type Retrospective. Subjects 1256/539/153/115 patients in the training cohort, internal validation cohort, and external validation cohorts I and II, respectively. Field Strength/Sequence 1.5 T/3.0 T, non‐contrast T1‐weighted spin‐echo sequence imaging (T1WI), DCE‐T1WI, and diffusion‐weighted imaging. Assessment Clinical pathological and MRI semantic features were obtained by reviewing histopathology and MRI reports. The segmentation of the tumor lesion on the first phase of T1WI DCE‐MRI images was applied to other phases after registration. A DL architecture termed convolutional recurrent neural network (ConvRNN) was developed to generate the KH image (kinetic heterogeneity of DCE‐MRI image) score that indicated the ALN status in patients with BC. The model was trained and optimized on training and internal validation cohorts, tested on two external validation cohorts. We compared ConvRNN model with other 10 models and the subgroup analyses of tumor size, magnetic field strength, and molecular subtype were also evaluated. Statistical Tests Chi‐squared, Fisher's exact, Student's t , Mann–Whitney U tests, and receiver operating characteristics (ROC) analysis were performed. P < 0.05 was considered significant. Results The ConvRNN model achieved area under the curve (AUC) of 0.802 in the internal validation cohort and 0.785–0.806 in the external validation cohorts. The ConvRNN model could well evaluate the ALN status of the four molecular subtypes (AUC = 0.685–0.868). The patients with larger tumor sizes (>5 cm) were more susceptible to ALN metastasis with KH image scores of 0.527–0.827. Data Conclusion A ConvRNN model outperformed traditional models for determining the ALN status in patients with BC. Level of Evidence 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小夏完成签到,获得积分10
1秒前
111发布了新的文献求助10
3秒前
张毅德完成签到 ,获得积分10
4秒前
天天完成签到 ,获得积分10
7秒前
Mujuas完成签到,获得积分10
7秒前
斯文的南琴完成签到,获得积分10
8秒前
范琴琴完成签到 ,获得积分10
10秒前
贪玩的谷芹完成签到 ,获得积分10
10秒前
美丽秋天完成签到,获得积分10
12秒前
14秒前
ty完成签到 ,获得积分10
15秒前
布吉岛呀完成签到 ,获得积分10
15秒前
SciGPT应助辣子肉采纳,获得10
15秒前
落叶捎来讯息完成签到 ,获得积分10
15秒前
英俊的铭应助TTTHANKS采纳,获得10
16秒前
找文献找文献完成签到 ,获得积分10
16秒前
略略略完成签到 ,获得积分10
17秒前
18秒前
刘十一完成签到 ,获得积分10
18秒前
怕黑钢笔完成签到 ,获得积分10
19秒前
tjnksy完成签到,获得积分10
20秒前
孙凯完成签到 ,获得积分10
21秒前
和谐以冬发布了新的文献求助10
24秒前
Orange应助whoknowsname采纳,获得10
26秒前
淡人微死完成签到 ,获得积分10
33秒前
执着之玉完成签到,获得积分10
33秒前
嘚嘚完成签到,获得积分10
34秒前
whoknowsname完成签到,获得积分10
38秒前
39秒前
yf完成签到,获得积分10
43秒前
absb发布了新的文献求助10
44秒前
ma121完成签到,获得积分10
44秒前
45秒前
迷你的灵完成签到,获得积分10
48秒前
49秒前
西瓜撞地球完成签到,获得积分10
50秒前
TTTHANKS发布了新的文献求助10
51秒前
随想完成签到,获得积分10
51秒前
研友_ZbP41L完成签到 ,获得积分10
52秒前
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573218
求助须知:如何正确求助?哪些是违规求助? 4659412
关于积分的说明 14724454
捐赠科研通 4599153
什么是DOI,文献DOI怎么找? 2524154
邀请新用户注册赠送积分活动 1494679
关于科研通互助平台的介绍 1464704