MRI‐Based Kinetic Heterogeneity Evaluation in the Accurate Access of Axillary Lymph Node Status in Breast Cancer Using a Hybrid CNN‐RNN Model

磁共振成像 乳腺癌 接收机工作特性 乳房磁振造影 医学 淋巴结 列线图 转移 比例危险模型 放射科 核医学 癌症 肿瘤科 内科学 乳腺摄影术
作者
Yi‐Jun Guo,Rui Yin,Qian Zhang,Junqi Han,Zhaoxiang Dou,Pengbo Wang,Hong Lu,Pei‐Fang Liu,Jingjing Chen,Wenjuan Ma
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:1
标识
DOI:10.1002/jmri.29225
摘要

Background Accurate evaluation of the axillary lymph node (ALN) status is needed for determining the treatment protocol for breast cancer (BC). The value of magnetic resonance imaging (MRI)‐based tumor heterogeneity in assessing ALN metastasis in BC is unclear. Purpose To assess the value of deep learning (DL)‐derived kinetic heterogeneity parameters based on BC dynamic contrast‐enhanced (DCE)‐MRI to infer the ALN status. Study Type Retrospective. Subjects 1256/539/153/115 patients in the training cohort, internal validation cohort, and external validation cohorts I and II, respectively. Field Strength/Sequence 1.5 T/3.0 T, non‐contrast T1‐weighted spin‐echo sequence imaging (T1WI), DCE‐T1WI, and diffusion‐weighted imaging. Assessment Clinical pathological and MRI semantic features were obtained by reviewing histopathology and MRI reports. The segmentation of the tumor lesion on the first phase of T1WI DCE‐MRI images was applied to other phases after registration. A DL architecture termed convolutional recurrent neural network (ConvRNN) was developed to generate the KH image (kinetic heterogeneity of DCE‐MRI image) score that indicated the ALN status in patients with BC. The model was trained and optimized on training and internal validation cohorts, tested on two external validation cohorts. We compared ConvRNN model with other 10 models and the subgroup analyses of tumor size, magnetic field strength, and molecular subtype were also evaluated. Statistical Tests Chi‐squared, Fisher's exact, Student's t , Mann–Whitney U tests, and receiver operating characteristics (ROC) analysis were performed. P < 0.05 was considered significant. Results The ConvRNN model achieved area under the curve (AUC) of 0.802 in the internal validation cohort and 0.785–0.806 in the external validation cohorts. The ConvRNN model could well evaluate the ALN status of the four molecular subtypes (AUC = 0.685–0.868). The patients with larger tumor sizes (>5 cm) were more susceptible to ALN metastasis with KH image scores of 0.527–0.827. Data Conclusion A ConvRNN model outperformed traditional models for determining the ALN status in patients with BC. Level of Evidence 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助粗犷的书包采纳,获得10
刚刚
梦红尘发布了新的文献求助10
刚刚
背后雪枫完成签到,获得积分10
刚刚
1秒前
Jasper应助自觉寒梦采纳,获得10
2秒前
Cherry完成签到 ,获得积分10
2秒前
zho发布了新的文献求助10
2秒前
XinSha完成签到,获得积分20
3秒前
4秒前
韩俊峰完成签到,获得积分10
4秒前
面包超人关注了科研通微信公众号
4秒前
5秒前
李李发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
YKH完成签到,获得积分20
6秒前
可爱的函函应助淡定可乐采纳,获得10
8秒前
9秒前
silong发布了新的文献求助10
9秒前
zbszd完成签到,获得积分10
9秒前
现代的雁枫完成签到,获得积分10
10秒前
source发布了新的文献求助10
10秒前
ZelongWang完成签到,获得积分20
11秒前
九月亦星发布了新的文献求助10
11秒前
刘芸若诗发布了新的文献求助10
11秒前
科研通AI6应助不知道叫哈采纳,获得10
11秒前
swq发布了新的文献求助10
11秒前
12秒前
蓝朱发布了新的文献求助10
13秒前
英姑应助邵洋采纳,获得10
13秒前
搜集达人应助tigger采纳,获得10
13秒前
14秒前
小马甲应助zbszd采纳,获得10
14秒前
15秒前
15秒前
15秒前
16秒前
沉静傥完成签到,获得积分10
16秒前
Wangshengnan完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577176
求助须知:如何正确求助?哪些是违规求助? 4662454
关于积分的说明 14741703
捐赠科研通 4603093
什么是DOI,文献DOI怎么找? 2526103
邀请新用户注册赠送积分活动 1495999
关于科研通互助平台的介绍 1465483