MRI‐Based Kinetic Heterogeneity Evaluation in the Accurate Access of Axillary Lymph Node Status in Breast Cancer Using a Hybrid CNN‐RNN Model

磁共振成像 乳腺癌 接收机工作特性 乳房磁振造影 医学 淋巴结 列线图 转移 比例危险模型 放射科 核医学 癌症 肿瘤科 内科学 乳腺摄影术
作者
Yi‐Jun Guo,Rui Yin,Qian Zhang,Junqi Han,Zhaoxiang Dou,Pengbo Wang,Hong Lu,Pei‐Fang Liu,Jingjing Chen,Wenjuan Ma
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:1
标识
DOI:10.1002/jmri.29225
摘要

Background Accurate evaluation of the axillary lymph node (ALN) status is needed for determining the treatment protocol for breast cancer (BC). The value of magnetic resonance imaging (MRI)‐based tumor heterogeneity in assessing ALN metastasis in BC is unclear. Purpose To assess the value of deep learning (DL)‐derived kinetic heterogeneity parameters based on BC dynamic contrast‐enhanced (DCE)‐MRI to infer the ALN status. Study Type Retrospective. Subjects 1256/539/153/115 patients in the training cohort, internal validation cohort, and external validation cohorts I and II, respectively. Field Strength/Sequence 1.5 T/3.0 T, non‐contrast T1‐weighted spin‐echo sequence imaging (T1WI), DCE‐T1WI, and diffusion‐weighted imaging. Assessment Clinical pathological and MRI semantic features were obtained by reviewing histopathology and MRI reports. The segmentation of the tumor lesion on the first phase of T1WI DCE‐MRI images was applied to other phases after registration. A DL architecture termed convolutional recurrent neural network (ConvRNN) was developed to generate the KH image (kinetic heterogeneity of DCE‐MRI image) score that indicated the ALN status in patients with BC. The model was trained and optimized on training and internal validation cohorts, tested on two external validation cohorts. We compared ConvRNN model with other 10 models and the subgroup analyses of tumor size, magnetic field strength, and molecular subtype were also evaluated. Statistical Tests Chi‐squared, Fisher's exact, Student's t , Mann–Whitney U tests, and receiver operating characteristics (ROC) analysis were performed. P < 0.05 was considered significant. Results The ConvRNN model achieved area under the curve (AUC) of 0.802 in the internal validation cohort and 0.785–0.806 in the external validation cohorts. The ConvRNN model could well evaluate the ALN status of the four molecular subtypes (AUC = 0.685–0.868). The patients with larger tumor sizes (>5 cm) were more susceptible to ALN metastasis with KH image scores of 0.527–0.827. Data Conclusion A ConvRNN model outperformed traditional models for determining the ALN status in patients with BC. Level of Evidence 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助咕咕咕采纳,获得10
刚刚
zxy发布了新的文献求助10
刚刚
1秒前
醉人的仔发布了新的文献求助10
1秒前
daguan完成签到,获得积分10
1秒前
桐桐应助nikai采纳,获得10
1秒前
2秒前
3秒前
123完成签到,获得积分10
3秒前
善良香岚发布了新的文献求助10
3秒前
4秒前
4秒前
444完成签到,获得积分10
4秒前
任一发布了新的文献求助30
4秒前
莉莉发布了新的文献求助10
5秒前
Zoe发布了新的文献求助10
5秒前
Hover完成签到,获得积分10
5秒前
自然的茉莉完成签到,获得积分10
6秒前
6秒前
Mandy完成签到,获得积分10
6秒前
7秒前
脑洞疼应助qaq采纳,获得10
7秒前
世界尽头发布了新的文献求助10
7秒前
小二郎应助科研民工采纳,获得10
7秒前
8秒前
无奈满天发布了新的文献求助10
8秒前
9秒前
MADKAI发布了新的文献求助10
9秒前
9秒前
贪玩丸子完成签到,获得积分10
9秒前
神勇的雅香应助liutaili采纳,获得10
10秒前
KSGGS完成签到,获得积分10
10秒前
YANG关注了科研通微信公众号
10秒前
11秒前
11秒前
11秒前
99发布了新的文献求助10
12秒前
12秒前
科研通AI5应助qi采纳,获得10
12秒前
乐乐发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759