MRI‐Based Kinetic Heterogeneity Evaluation in the Accurate Access of Axillary Lymph Node Status in Breast Cancer Using a Hybrid CNN‐RNN Model

磁共振成像 乳腺癌 接收机工作特性 乳房磁振造影 医学 淋巴结 列线图 转移 比例危险模型 放射科 核医学 癌症 肿瘤科 内科学 乳腺摄影术
作者
Yi‐Jun Guo,Rui Yin,Qian Zhang,Junqi Han,Zhaoxiang Dou,Pengbo Wang,Hong Lu,Pei‐Fang Liu,Jingjing Chen,Wenjuan Ma
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:1
标识
DOI:10.1002/jmri.29225
摘要

Background Accurate evaluation of the axillary lymph node (ALN) status is needed for determining the treatment protocol for breast cancer (BC). The value of magnetic resonance imaging (MRI)‐based tumor heterogeneity in assessing ALN metastasis in BC is unclear. Purpose To assess the value of deep learning (DL)‐derived kinetic heterogeneity parameters based on BC dynamic contrast‐enhanced (DCE)‐MRI to infer the ALN status. Study Type Retrospective. Subjects 1256/539/153/115 patients in the training cohort, internal validation cohort, and external validation cohorts I and II, respectively. Field Strength/Sequence 1.5 T/3.0 T, non‐contrast T1‐weighted spin‐echo sequence imaging (T1WI), DCE‐T1WI, and diffusion‐weighted imaging. Assessment Clinical pathological and MRI semantic features were obtained by reviewing histopathology and MRI reports. The segmentation of the tumor lesion on the first phase of T1WI DCE‐MRI images was applied to other phases after registration. A DL architecture termed convolutional recurrent neural network (ConvRNN) was developed to generate the KH image (kinetic heterogeneity of DCE‐MRI image) score that indicated the ALN status in patients with BC. The model was trained and optimized on training and internal validation cohorts, tested on two external validation cohorts. We compared ConvRNN model with other 10 models and the subgroup analyses of tumor size, magnetic field strength, and molecular subtype were also evaluated. Statistical Tests Chi‐squared, Fisher's exact, Student's t , Mann–Whitney U tests, and receiver operating characteristics (ROC) analysis were performed. P < 0.05 was considered significant. Results The ConvRNN model achieved area under the curve (AUC) of 0.802 in the internal validation cohort and 0.785–0.806 in the external validation cohorts. The ConvRNN model could well evaluate the ALN status of the four molecular subtypes (AUC = 0.685–0.868). The patients with larger tumor sizes (>5 cm) were more susceptible to ALN metastasis with KH image scores of 0.527–0.827. Data Conclusion A ConvRNN model outperformed traditional models for determining the ALN status in patients with BC. Level of Evidence 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
桑葚啊完成签到,获得积分10
2秒前
复杂的之卉完成签到,获得积分10
5秒前
5秒前
5秒前
plant发布了新的文献求助10
5秒前
6秒前
7秒前
8秒前
甜蜜寄文完成签到 ,获得积分10
10秒前
11秒前
11秒前
落寞奎发布了新的文献求助10
12秒前
你怎么那么美完成签到,获得积分10
12秒前
12秒前
14秒前
小马甲应助wzj采纳,获得10
14秒前
传奇3应助plant采纳,获得10
14秒前
Ava应助SL采纳,获得10
15秒前
xxxyuxi发布了新的文献求助10
15秒前
18秒前
Bio应助Nelson采纳,获得30
19秒前
Triste发布了新的文献求助10
19秒前
20秒前
20秒前
幽默的小之完成签到,获得积分10
20秒前
落寞奎完成签到,获得积分10
20秒前
22秒前
22秒前
oliver1234完成签到,获得积分10
22秒前
22秒前
月下荷花发布了新的文献求助10
23秒前
xxxyuxi完成签到,获得积分10
23秒前
oliver1234发布了新的文献求助20
25秒前
25秒前
Lucas应助Chenyan775199采纳,获得10
26秒前
李浩然发布了新的文献求助10
26秒前
26秒前
27秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979704
求助须知:如何正确求助?哪些是违规求助? 3523679
关于积分的说明 11218338
捐赠科研通 3261196
什么是DOI,文献DOI怎么找? 1800490
邀请新用户注册赠送积分活动 879113
科研通“疑难数据库(出版商)”最低求助积分说明 807182