FedCMK: An Efficient Privacy-Preserving Federated Learning Framework

计算机科学 联合学习 计算机安全 理论计算机科学 万维网 人工智能
作者
Pengyu Lu,Xianjia Meng,Ximeng Liu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 253-271
标识
DOI:10.1007/978-981-99-9785-5_18
摘要

Federated learning emerged to solve the privacy leakage problem of traditional centralized machine learning methods. Although traditional federated learning updates the global model by updating the gradient, an attacker may still infer the model update through backward inference, which may lead to privacy leakage problems. In order to enhance the security of federated learning, we propose a solution to this challenge by presenting a multi-key Cheon-Kim-Kim-Song (CKKS) scheme for privacy protection in federated learning. Our approach can enable each participant to use local datasets for federated learning while maintaining data security and model accuracy, and we also introduce FedCMK, a more efficient and secure federated learning framework. FedCMK uses an improved client selection strategy to improve the training speed of the framework, redesigns the key aggregation process according to the improved client selection strategy, and proposes a scheme vMK-CKKS, to ensure the security of the framework within a certain threshold. In particular, the vMK-CKKS scheme adds a secret verification mechanism to prevent participants from malicious attacks through false information. The experiments show that our proposed vMK-CKKS schemes significantly improve security and efficiency compared with the previous encryption schemes. FedCMK reduces training time by 21 $$\%$$ on average while guaranteeing model accuracy, and it provides robustness by allowing participants to join or leave during the process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cm完成签到,获得积分10
刚刚
1秒前
LW发布了新的文献求助10
1秒前
Brave完成签到,获得积分10
1秒前
Tiffany完成签到,获得积分10
1秒前
木心应助舒心雨采纳,获得20
1秒前
ttrr发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
穆紫研完成签到 ,获得积分10
2秒前
666完成签到,获得积分10
2秒前
2秒前
liaokilo完成签到,获得积分10
3秒前
3秒前
善良傲柏完成签到,获得积分10
3秒前
隐形曼青应助飘逸鸵鸟采纳,获得10
3秒前
neil完成签到,获得积分10
4秒前
欣喜电源完成签到,获得积分10
4秒前
4秒前
calm完成签到,获得积分10
4秒前
5秒前
6秒前
xiaxianong完成签到,获得积分10
6秒前
旦旦旦旦旦旦完成签到,获得积分10
7秒前
7秒前
哈哈哈发布了新的文献求助10
7秒前
7秒前
NAN完成签到,获得积分10
8秒前
8秒前
uilyang发布了新的文献求助30
8秒前
xiao双月完成签到,获得积分10
9秒前
9秒前
10秒前
木头羊发布了新的文献求助10
10秒前
10秒前
wangwei完成签到 ,获得积分10
10秒前
安南完成签到 ,获得积分10
10秒前
11秒前
ttrr完成签到,获得积分10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582