FedCMK: An Efficient Privacy-Preserving Federated Learning Framework

计算机科学 联合学习 计算机安全 理论计算机科学 万维网 人工智能
作者
Pengyu Lu,Xianjia Meng,Ximeng Liu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 253-271
标识
DOI:10.1007/978-981-99-9785-5_18
摘要

Federated learning emerged to solve the privacy leakage problem of traditional centralized machine learning methods. Although traditional federated learning updates the global model by updating the gradient, an attacker may still infer the model update through backward inference, which may lead to privacy leakage problems. In order to enhance the security of federated learning, we propose a solution to this challenge by presenting a multi-key Cheon-Kim-Kim-Song (CKKS) scheme for privacy protection in federated learning. Our approach can enable each participant to use local datasets for federated learning while maintaining data security and model accuracy, and we also introduce FedCMK, a more efficient and secure federated learning framework. FedCMK uses an improved client selection strategy to improve the training speed of the framework, redesigns the key aggregation process according to the improved client selection strategy, and proposes a scheme vMK-CKKS, to ensure the security of the framework within a certain threshold. In particular, the vMK-CKKS scheme adds a secret verification mechanism to prevent participants from malicious attacks through false information. The experiments show that our proposed vMK-CKKS schemes significantly improve security and efficiency compared with the previous encryption schemes. FedCMK reduces training time by 21 $$\%$$ on average while guaranteeing model accuracy, and it provides robustness by allowing participants to join or leave during the process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
灵巧的飞雪完成签到 ,获得积分10
1秒前
多C多快乐完成签到 ,获得积分10
3秒前
愉悦完成签到,获得积分10
3秒前
在水一方应助秋秋采纳,获得10
3秒前
3秒前
王灿灿发布了新的文献求助10
4秒前
静谧完成签到 ,获得积分10
4秒前
深情安青应助虎帅采纳,获得10
4秒前
wqc2060完成签到,获得积分10
5秒前
迅速孤容发布了新的文献求助10
5秒前
5秒前
whz完成签到,获得积分10
6秒前
NANA应助ff采纳,获得10
6秒前
6秒前
鳗鱼灵完成签到,获得积分10
7秒前
8秒前
赘婿应助六月采纳,获得10
9秒前
是猪毛啊发布了新的文献求助10
10秒前
10秒前
Ms完成签到 ,获得积分10
10秒前
爱我的人不爱我完成签到,获得积分20
10秒前
薰硝壤应助玩具销售员采纳,获得30
10秒前
10秒前
WANGs发布了新的文献求助10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
curtisness应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得30
11秒前
curtisness应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
wqxm完成签到,获得积分10
13秒前
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143246
求助须知:如何正确求助?哪些是违规求助? 2794391
关于积分的说明 7811052
捐赠科研通 2450640
什么是DOI,文献DOI怎么找? 1303909
科研通“疑难数据库(出版商)”最低求助积分说明 627144
版权声明 601386