Unlocking the neural mechanisms of consumer loan evaluations: an fNIRS and ML-based consumer neuroscience study

眶额皮质 消费者神经科学 背外侧前额叶皮质 前额叶皮质 心理学 神经科学 功能近红外光谱 认知心理学 神经认知 意识的神经相关物 认知神经科学 认知
作者
Tuna Çakar,Semen Son-Turan,Yener Girişken,Alperen Sayar,Seyit Ertuğrul,Gözde Filiz,E Tuna
出处
期刊:Frontiers in Human Neuroscience [Frontiers Media SA]
卷期号:18
标识
DOI:10.3389/fnhum.2024.1286918
摘要

This study conducts a comprehensive exploration of the neurocognitive processes underlying consumer credit decision-making using cutting-edge techniques from neuroscience and machine learning (ML). Employing functional Near-Infrared Spectroscopy (fNIRS), the research examines the hemodynamic responses of participants while evaluating diverse credit offers.The experimental phase of this study investigates the hemodynamic responses collected from 39 healthy participants with respect to different loan offers. This study integrates fNIRS data with advanced ML algorithms, specifically Extreme Gradient Boosting, CatBoost, Extra Tree Classifier, and Light Gradient Boosted Machine, to predict participants' credit decisions based on prefrontal cortex (PFC) activation patterns.Findings reveal distinctive PFC regions correlating with credit behaviors, including the dorsolateral prefrontal cortex (dlPFC) associated with strategic decision-making, the orbitofrontal cortex (OFC) linked to emotional valuations, and the ventromedial prefrontal cortex (vmPFC) reflecting brand integration and reward processing. Notably, the right dorsomedial prefrontal cortex (dmPFC) and the right vmPFC contribute to positive credit preferences.This interdisciplinary approach bridges neuroscience, machine learning and finance, offering unprecedented insights into the neural mechanisms guiding financial choices regarding different loan offers. The study's predictive model holds promise for refining financial services and illuminating human financial behavior within the burgeoning field of neurofinance. The work exemplifies the potential of interdisciplinary research to enhance our understanding of human financial decision-making.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
天天发布了新的文献求助10
刚刚
klandcy完成签到,获得积分10
1秒前
爆米花应助小h采纳,获得10
4秒前
6秒前
benmao_mogu发布了新的文献求助10
6秒前
duyisai完成签到,获得积分10
8秒前
10秒前
12秒前
caoju发布了新的文献求助10
12秒前
17秒前
NexusExplorer应助Yashyi采纳,获得10
18秒前
18秒前
Ljh完成签到,获得积分10
19秒前
21秒前
科研通AI6.1应助szyyyyy采纳,获得10
21秒前
21秒前
22秒前
23秒前
好晒发布了新的文献求助10
27秒前
llll发布了新的文献求助10
29秒前
充电宝应助jojo采纳,获得10
31秒前
miaomiao发布了新的文献求助10
31秒前
liuliu梅完成签到 ,获得积分10
34秒前
轻松梦岚应助予秋采纳,获得10
38秒前
pluto应助予秋采纳,获得10
38秒前
大个应助caoju采纳,获得10
39秒前
44秒前
小药丸完成签到 ,获得积分10
45秒前
47秒前
48秒前
49秒前
49秒前
小郭发布了新的文献求助10
50秒前
jojo发布了新的文献求助10
50秒前
文静的慕梅完成签到,获得积分20
53秒前
Akim应助瘦瘦的枫叶采纳,获得10
53秒前
53秒前
yujinglu发布了新的文献求助10
53秒前
科研喵发布了新的文献求助10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Using a Non-Equivalent Control Group Design in Educational Research 200
Public Health, Personal Health and Pills: Drug Entanglements and Pharmaceuticalised Governance 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5868245
求助须知:如何正确求助?哪些是违规求助? 6439836
关于积分的说明 15658050
捐赠科研通 4983670
什么是DOI,文献DOI怎么找? 2687581
邀请新用户注册赠送积分活动 1630242
关于科研通互助平台的介绍 1588346