Probability prediction of groundstroke stances among male professional tennis players using a tree-augmented Bayesian network

贝叶斯概率 计算机科学 树(集合论) 贝叶斯网络 统计 心理学 机器学习 计量经济学 人工智能 数学 数学分析
作者
Jing Zhou,Yu Liu
出处
期刊:International Journal of Performance Analysis in Sport [Taylor & Francis]
卷期号:24 (5): 403-415 被引量:3
标识
DOI:10.1080/24748668.2024.2314646
摘要

The use of different stances can provide tennis players with a tactical advantage since it enables them to cover a larger court area faster. This is especially critical since the entire stroke process takes only 1.5 seconds. However, it is unclear which stance is most suitable on the court. The purpose of the study was to predict the probability of the four stances used for forehand and two-handed backhand (2BH) in different court situations. Four influencing variables (landing zone of the ball (LZB), positioning of the player (PP), returning direction of the ball, landing zone of the returning ball) and one target variable (groundstroke stance) were collected from 3,850 successful shots at the Australian Open by a notation system to train a Bayesian network. Conditional probabilities of stance were estimated based on the two dominant influencing variables derived from Bayesian modelling. Both PP (0.53) and LZB (0.29) were identified as the most dominant influencing variables for stance selection. Probability distributions indicated that open and semi-open stances were most commonly used for forehand strokes, while closed stance was prevalent for 2BH strokes. Our preliminary findings provide insights into the court usage characteristics of the forehand and 2BH in dominant stances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自觉子默完成签到,获得积分10
刚刚
sss发布了新的文献求助10
4秒前
高高猎豹完成签到 ,获得积分10
5秒前
淡然冬灵发布了新的文献求助10
5秒前
成就小懒虫完成签到,获得积分10
7秒前
盛夏应助听话的画板采纳,获得10
7秒前
甜甜圈完成签到,获得积分10
7秒前
8秒前
8秒前
积极黄豆完成签到,获得积分10
9秒前
ceeray23应助xiaon采纳,获得10
9秒前
所所应助科研小白采纳,获得10
10秒前
10秒前
ceeray23应助hihi采纳,获得10
10秒前
sss完成签到,获得积分10
13秒前
新手上路完成签到,获得积分10
14秒前
闪闪半芹完成签到,获得积分10
15秒前
王赞完成签到,获得积分10
15秒前
土豪的土豆完成签到 ,获得积分10
16秒前
CY完成签到,获得积分10
16秒前
Jasper应助罗颂子采纳,获得10
16秒前
17秒前
poplar完成签到,获得积分10
17秒前
17秒前
千年主治完成签到 ,获得积分10
19秒前
晴栀发布了新的文献求助30
20秒前
20秒前
20秒前
小孙完成签到,获得积分10
21秒前
zxy完成签到,获得积分10
22秒前
无花果应助ai化学采纳,获得10
22秒前
22秒前
qiang发布了新的文献求助10
23秒前
23秒前
24秒前
英俊的铭应助无情修杰采纳,获得10
25秒前
碗碗完成签到,获得积分10
25秒前
ch发布了新的文献求助10
26秒前
西瓜完成签到 ,获得积分10
26秒前
79发布了新的文献求助10
27秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737713
求助须知:如何正确求助?哪些是违规求助? 3281328
关于积分的说明 10024815
捐赠科研通 2998078
什么是DOI,文献DOI怎么找? 1645034
邀请新用户注册赠送积分活动 782506
科研通“疑难数据库(出版商)”最低求助积分说明 749814