A Graph Convolutional Neural Network for Recommendation Based on Community Detection and Combination of Multiple Heterogeneous Graphs

计算机科学 卷积神经网络 图形 推荐系统 人工智能 机器学习 理论计算机科学
作者
Caihong Mu,Heyuan Huang,Yunfei Fang,Yi Liu
标识
DOI:10.1109/icdm58522.2023.00154
摘要

Graph Convolutional Neural Networks (GCNs) have performed well in many recommendation scenarios. In spite of this, recommendation models based on GCNs still face problems such as insufficient information mining and high complexity for some existing models. To address the above problems, we propose a Graph Convolutional Neural Network for Recommendation Based on Community Detection and the Combination of Multiple Heterogeneous Graphs (GCN-CMHG). This model uses the community detection algorithm to detect the communities in the user-item interaction heterogeneous graph (UIIHG), Finds the regional central nodes of communities, and then creates edges between the regional central node of each community and all other nodes in the UIIHG to construct the heterogeneous partial adjacent graph. Then, a Heterogeneous Partial Adjacent Auxiliary (HPAA) layer is designed to aggregate information on the heterogeneous partial adjacent graph. HPAA layer expands the influence of distant nodes on target nodes, enables target nodes to receive global information, and enhances the ability of GCN-CMHG to mine information. Specially, due to the low complexity of HPAA layer and the abandonment of redundant information, GCN-CMHG is easier to implement and train. Under the exact same experimental setting, GCN-CMHG's time consumption is only about 1/10 of another model based on GCN called Graph Convolutional Neural Network for Recommendation Based on the Combination of Multiple Heterogeneous Graphs (GCN-MHG). Experiments on multiple real-world datasets show that GCN-CMHG achieves better results compared with several advanced models. The implementation of our work can be found at https://github.com/GCNRSs/GCN-CMHG.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huhuhuhuxuan完成签到,获得积分10
刚刚
天白完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
小魏小魏发布了新的文献求助20
1秒前
光亮松鼠完成签到,获得积分10
1秒前
上官若男应助单纯白梦采纳,获得10
1秒前
璎珞完成签到,获得积分10
2秒前
xxxx发布了新的文献求助10
2秒前
Rg完成签到 ,获得积分10
2秒前
扎心发布了新的文献求助10
2秒前
123lx发布了新的文献求助10
2秒前
Owen应助gsgg采纳,获得10
3秒前
lyk2815完成签到,获得积分10
3秒前
4秒前
这颗糖好tian完成签到,获得积分10
4秒前
小杨爱学习完成签到,获得积分10
5秒前
kaia发布了新的文献求助10
5秒前
慈祥的花瓣完成签到,获得积分10
5秒前
Darius完成签到,获得积分10
6秒前
NexusExplorer应助小黑驴采纳,获得10
6秒前
6秒前
领导范儿应助Hmn采纳,获得10
6秒前
算我运气好完成签到,获得积分10
6秒前
爆米花应助朴素的凉面采纳,获得10
7秒前
挽棠完成签到,获得积分10
7秒前
xbw1120完成签到,获得积分20
8秒前
留胡子的如花完成签到,获得积分10
8秒前
zhangxin完成签到,获得积分10
8秒前
10秒前
兴奋的若菱完成签到 ,获得积分10
10秒前
我是老大应助马夋采纳,获得10
10秒前
牧童发布了新的文献求助10
11秒前
所所应助扎心采纳,获得10
11秒前
景代丝完成签到,获得积分0
11秒前
小逗逗n号发布了新的文献求助30
12秒前
木子完成签到,获得积分10
12秒前
压力是多的完成签到,获得积分10
13秒前
zhangsansan发布了新的文献求助10
13秒前
14秒前
在水一方应助lilian采纳,获得10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960387
求助须知:如何正确求助?哪些是违规求助? 3506503
关于积分的说明 11130906
捐赠科研通 3238717
什么是DOI,文献DOI怎么找? 1789884
邀请新用户注册赠送积分活动 871982
科研通“疑难数据库(出版商)”最低求助积分说明 803118