A Graph Convolutional Neural Network for Recommendation Based on Community Detection and Combination of Multiple Heterogeneous Graphs

计算机科学 卷积神经网络 图形 推荐系统 人工智能 机器学习 理论计算机科学
作者
Caihong Mu,Heyuan Huang,Yunfei Fang,Yi Liu
标识
DOI:10.1109/icdm58522.2023.00154
摘要

Graph Convolutional Neural Networks (GCNs) have performed well in many recommendation scenarios. In spite of this, recommendation models based on GCNs still face problems such as insufficient information mining and high complexity for some existing models. To address the above problems, we propose a Graph Convolutional Neural Network for Recommendation Based on Community Detection and the Combination of Multiple Heterogeneous Graphs (GCN-CMHG). This model uses the community detection algorithm to detect the communities in the user-item interaction heterogeneous graph (UIIHG), Finds the regional central nodes of communities, and then creates edges between the regional central node of each community and all other nodes in the UIIHG to construct the heterogeneous partial adjacent graph. Then, a Heterogeneous Partial Adjacent Auxiliary (HPAA) layer is designed to aggregate information on the heterogeneous partial adjacent graph. HPAA layer expands the influence of distant nodes on target nodes, enables target nodes to receive global information, and enhances the ability of GCN-CMHG to mine information. Specially, due to the low complexity of HPAA layer and the abandonment of redundant information, GCN-CMHG is easier to implement and train. Under the exact same experimental setting, GCN-CMHG's time consumption is only about 1/10 of another model based on GCN called Graph Convolutional Neural Network for Recommendation Based on the Combination of Multiple Heterogeneous Graphs (GCN-MHG). Experiments on multiple real-world datasets show that GCN-CMHG achieves better results compared with several advanced models. The implementation of our work can be found at https://github.com/GCNRSs/GCN-CMHG.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
denly应助王东旭采纳,获得10
刚刚
yiyi发布了新的文献求助10
刚刚
Jjj完成签到,获得积分10
刚刚
碧蓝的安露完成签到 ,获得积分10
刚刚
大个应助辐睿采纳,获得10
1秒前
量子星尘发布了新的文献求助20
1秒前
2秒前
2秒前
lc发布了新的文献求助20
2秒前
2秒前
2秒前
yutian完成签到,获得积分10
3秒前
again完成签到,获得积分10
4秒前
4秒前
杨华启完成签到,获得积分10
4秒前
XYN1完成签到,获得积分10
4秒前
香蕉觅云应助精明人达采纳,获得10
5秒前
5秒前
nianxunxi完成签到,获得积分10
5秒前
MouLi完成签到,获得积分10
5秒前
221完成签到,获得积分10
5秒前
英姑应助杨19980625采纳,获得10
6秒前
paz_1010完成签到,获得积分10
6秒前
脑洞疼应助无颜猪采纳,获得10
6秒前
charry发布了新的文献求助10
6秒前
7秒前
7秒前
KARRY完成签到 ,获得积分20
7秒前
ZXD1989完成签到 ,获得积分10
7秒前
破伤疯完成签到,获得积分10
7秒前
7秒前
8秒前
靓丽幻梅发布了新的文献求助10
8秒前
8秒前
8秒前
wgl200212发布了新的文献求助10
8秒前
小闰土完成签到,获得积分10
8秒前
简默发布了新的文献求助10
9秒前
梓墨发布了新的文献求助30
9秒前
SciGPT应助健忘的醉蝶采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017