A Graph Convolutional Neural Network for Recommendation Based on Community Detection and Combination of Multiple Heterogeneous Graphs

计算机科学 卷积神经网络 图形 推荐系统 人工智能 机器学习 理论计算机科学
作者
Caihong Mu,Heyuan Huang,Yunfei Fang,Yi Liu
标识
DOI:10.1109/icdm58522.2023.00154
摘要

Graph Convolutional Neural Networks (GCNs) have performed well in many recommendation scenarios. In spite of this, recommendation models based on GCNs still face problems such as insufficient information mining and high complexity for some existing models. To address the above problems, we propose a Graph Convolutional Neural Network for Recommendation Based on Community Detection and the Combination of Multiple Heterogeneous Graphs (GCN-CMHG). This model uses the community detection algorithm to detect the communities in the user-item interaction heterogeneous graph (UIIHG), Finds the regional central nodes of communities, and then creates edges between the regional central node of each community and all other nodes in the UIIHG to construct the heterogeneous partial adjacent graph. Then, a Heterogeneous Partial Adjacent Auxiliary (HPAA) layer is designed to aggregate information on the heterogeneous partial adjacent graph. HPAA layer expands the influence of distant nodes on target nodes, enables target nodes to receive global information, and enhances the ability of GCN-CMHG to mine information. Specially, due to the low complexity of HPAA layer and the abandonment of redundant information, GCN-CMHG is easier to implement and train. Under the exact same experimental setting, GCN-CMHG's time consumption is only about 1/10 of another model based on GCN called Graph Convolutional Neural Network for Recommendation Based on the Combination of Multiple Heterogeneous Graphs (GCN-MHG). Experiments on multiple real-world datasets show that GCN-CMHG achieves better results compared with several advanced models. The implementation of our work can be found at https://github.com/GCNRSs/GCN-CMHG.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光的定帮完成签到,获得积分10
3秒前
3秒前
3秒前
雨琴完成签到,获得积分10
3秒前
英姑应助辛勤的志泽采纳,获得10
4秒前
共享精神应助沉默的不惜采纳,获得10
4秒前
苗苗完成签到,获得积分10
5秒前
小眼儿完成签到,获得积分10
5秒前
bobochi完成签到 ,获得积分10
6秒前
w6完成签到,获得积分10
7秒前
YY完成签到,获得积分10
8秒前
小圆圈发布了新的文献求助10
8秒前
胡图图完成签到,获得积分10
8秒前
CC完成签到,获得积分20
11秒前
13秒前
星辰大海应助马户的崛起采纳,获得50
13秒前
小灰灰完成签到 ,获得积分10
15秒前
害羞的可愁完成签到 ,获得积分10
16秒前
raymond完成签到,获得积分10
16秒前
19秒前
flj7038完成签到,获得积分10
19秒前
Hu发布了新的文献求助10
20秒前
BitBong完成签到,获得积分10
21秒前
北国雪未消完成签到 ,获得积分10
21秒前
长隆完成签到 ,获得积分10
21秒前
佟一笑完成签到,获得积分10
23秒前
惑感完成签到 ,获得积分10
23秒前
24秒前
zy_完成签到,获得积分10
25秒前
王耶耶发布了新的文献求助10
29秒前
Hui完成签到,获得积分10
32秒前
36秒前
沉默的不惜完成签到,获得积分20
39秒前
楼亦玉完成签到,获得积分10
39秒前
随机子应助王耶耶采纳,获得10
40秒前
41秒前
HHHJJJKKK完成签到,获得积分10
41秒前
41秒前
41秒前
和谐的乌冬面完成签到,获得积分10
43秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164937
求助须知:如何正确求助?哪些是违规求助? 2816026
关于积分的说明 7911173
捐赠科研通 2475663
什么是DOI,文献DOI怎么找? 1318362
科研通“疑难数据库(出版商)”最低求助积分说明 632098
版权声明 602370