已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Computational identification of DNA damage-relevant lncRNAs for predicting therapeutic efficacy and clinical outcomes in cancer

计算生物学 一致性 计算机科学 生物信息学 生物
作者
Yixin Liu,Shan Huang,Guanghui Dong,Hou Chang,Yuming Zhao,Dandan Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:171: 108107-108107
标识
DOI:10.1016/j.compbiomed.2024.108107
摘要

The role of long non-coding RNAs (lncRNAs) in cancer treatment, particularly in modulating DNA repair programs, is an emerging field that warrants systematic exploration. This study aimed to systematically identify the lncRNA regulators that potentially regulate DNA damage response (DDR). Using genome-wide mRNA and lncRNA expression profiles of the same tumor patients, we proposed a novel computational framework. This framework performed Gene Set Variation Analysis to calculate DDR pathway enrichment score, which relies on weighting by tumor purity to obtain DDR activity score for each patient. Then, an in-depth differential expression profiling was conducted to identify pathway activity lncRNAs between high- and low-activity groups, utilizing a bootstrap-based randomization method. We comprehensively charted the landscape of DDR-relevant lncRNAs across 23 epithelial-based cancer types. Its effectiveness was validated by assessing the consistency of these lncRNAs within various datasets of the same cancer type (hypergeometric test P < 0.001), examining the expression perturbation of these lncRNAs in response to treatment and demonstrating its application in prioritizing clinically-related lncRNAs. Furthermore, leveraging 820 epithelial ovarian cancer patients from four public datasets, we applied these lncRNAs identified by DDRLnc to establish and validate a risk stratification model to evaluate the benefits of platinum-based adjuvant chemotherapy for the improvement of clinical treatment outcomes. Comprehensive pan-cancer analysis illustrates the utility of computational framework in identifying potentially lncRNAs involved in DDR, thereby offering novel insights into the complex realm of cancer research, and it will become a valuable tool for identifying potential therapeutic targets for cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小爱发布了新的文献求助10
1秒前
AAAstf完成签到 ,获得积分10
3秒前
思源应助hhc采纳,获得10
3秒前
5秒前
隐形曼青应助郎治宇采纳,获得10
5秒前
喜悦曼荷完成签到 ,获得积分10
6秒前
落后盼望完成签到,获得积分10
13秒前
烟花应助小爱采纳,获得10
13秒前
13秒前
16秒前
林谷雨完成签到 ,获得积分10
16秒前
冯冯完成签到 ,获得积分10
16秒前
郎治宇发布了新的文献求助10
19秒前
20秒前
无花果应助寒武纪采纳,获得10
21秒前
远处的立交完成签到,获得积分10
23秒前
魏阳虹完成签到 ,获得积分10
23秒前
阳光皮带完成签到,获得积分10
25秒前
Ann发布了新的文献求助10
25秒前
Thanatos应助否认冶游史采纳,获得10
26秒前
科研通AI2S应助扎菜采纳,获得10
27秒前
Kavin完成签到,获得积分10
28秒前
李爱国应助自觉的鸿涛采纳,获得10
29秒前
xhh完成签到 ,获得积分10
30秒前
开心听露发布了新的文献求助10
31秒前
十三号失眠完成签到 ,获得积分10
31秒前
32秒前
33秒前
oceanao应助sun采纳,获得10
34秒前
Ann完成签到,获得积分20
36秒前
TBLS发布了新的文献求助10
37秒前
38秒前
39秒前
活泼的沅发布了新的文献求助10
41秒前
敏敏完成签到,获得积分10
41秒前
lindsay完成签到,获得积分10
42秒前
shjyang完成签到,获得积分0
43秒前
zhaowenxian发布了新的文献求助10
45秒前
45秒前
希望天下0贩的0应助令莞采纳,获得30
46秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158476
求助须知:如何正确求助?哪些是违规求助? 2809636
关于积分的说明 7883043
捐赠科研通 2468315
什么是DOI,文献DOI怎么找? 1314077
科研通“疑难数据库(出版商)”最低求助积分说明 630572
版权声明 601956