Computational identification of DNA damage-relevant lncRNAs for predicting therapeutic efficacy and clinical outcomes in cancer

计算生物学 一致性 计算机科学 生物信息学 生物
作者
Yixin Liu,Shan Huang,Guanghui Dong,Hou Chang,Yuming Zhao,Dandan Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:171: 108107-108107
标识
DOI:10.1016/j.compbiomed.2024.108107
摘要

The role of long non-coding RNAs (lncRNAs) in cancer treatment, particularly in modulating DNA repair programs, is an emerging field that warrants systematic exploration. This study aimed to systematically identify the lncRNA regulators that potentially regulate DNA damage response (DDR). Using genome-wide mRNA and lncRNA expression profiles of the same tumor patients, we proposed a novel computational framework. This framework performed Gene Set Variation Analysis to calculate DDR pathway enrichment score, which relies on weighting by tumor purity to obtain DDR activity score for each patient. Then, an in-depth differential expression profiling was conducted to identify pathway activity lncRNAs between high- and low-activity groups, utilizing a bootstrap-based randomization method. We comprehensively charted the landscape of DDR-relevant lncRNAs across 23 epithelial-based cancer types. Its effectiveness was validated by assessing the consistency of these lncRNAs within various datasets of the same cancer type (hypergeometric test P < 0.001), examining the expression perturbation of these lncRNAs in response to treatment and demonstrating its application in prioritizing clinically-related lncRNAs. Furthermore, leveraging 820 epithelial ovarian cancer patients from four public datasets, we applied these lncRNAs identified by DDRLnc to establish and validate a risk stratification model to evaluate the benefits of platinum-based adjuvant chemotherapy for the improvement of clinical treatment outcomes. Comprehensive pan-cancer analysis illustrates the utility of computational framework in identifying potentially lncRNAs involved in DDR, thereby offering novel insights into the complex realm of cancer research, and it will become a valuable tool for identifying potential therapeutic targets for cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助小邹采纳,获得10
1秒前
陶醉的熊发布了新的文献求助10
2秒前
3秒前
qsy完成签到,获得积分10
3秒前
搜集达人应助高兴荔枝采纳,获得10
4秒前
勤劳诗云完成签到,获得积分10
5秒前
AshEnder发布了新的文献求助10
7秒前
Alces发布了新的文献求助200
8秒前
Owen应助wx采纳,获得300
8秒前
111发布了新的文献求助10
8秒前
婷婷婷完成签到 ,获得积分10
8秒前
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
Micro_A应助科研通管家采纳,获得10
8秒前
xunxunmimi应助科研通管家采纳,获得10
8秒前
9秒前
orixero应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
xunxunmimi应助科研通管家采纳,获得10
9秒前
pitto发布了新的文献求助10
13秒前
Waney完成签到,获得积分10
18秒前
是ok耶发布了新的文献求助10
19秒前
pitto完成签到,获得积分10
19秒前
SSS关注了科研通微信公众号
19秒前
福明明完成签到,获得积分10
22秒前
楼北完成签到,获得积分10
23秒前
开放笑天发布了新的文献求助50
23秒前
kisaragiidu完成签到,获得积分10
25秒前
Paranoia发布了新的文献求助10
27秒前
27秒前
30秒前
薄荷关注了科研通微信公众号
38秒前
是ok耶完成签到,获得积分10
38秒前
orixero应助坦率的尔丝采纳,获得10
40秒前
陶醉的熊发布了新的文献求助10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775692
求助须知:如何正确求助?哪些是违规求助? 3321312
关于积分的说明 10204776
捐赠科研通 3036237
什么是DOI,文献DOI怎么找? 1666031
邀请新用户注册赠送积分活动 797258
科研通“疑难数据库(出版商)”最低求助积分说明 757783