Computational identification of DNA damage-relevant lncRNAs for predicting therapeutic efficacy and clinical outcomes in cancer

计算生物学 一致性 计算机科学 生物信息学 生物
作者
Yixin Liu,Shan Huang,Guanghui Dong,Hou Chang,Yuming Zhao,Dandan Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:171: 108107-108107
标识
DOI:10.1016/j.compbiomed.2024.108107
摘要

The role of long non-coding RNAs (lncRNAs) in cancer treatment, particularly in modulating DNA repair programs, is an emerging field that warrants systematic exploration. This study aimed to systematically identify the lncRNA regulators that potentially regulate DNA damage response (DDR). Using genome-wide mRNA and lncRNA expression profiles of the same tumor patients, we proposed a novel computational framework. This framework performed Gene Set Variation Analysis to calculate DDR pathway enrichment score, which relies on weighting by tumor purity to obtain DDR activity score for each patient. Then, an in-depth differential expression profiling was conducted to identify pathway activity lncRNAs between high- and low-activity groups, utilizing a bootstrap-based randomization method. We comprehensively charted the landscape of DDR-relevant lncRNAs across 23 epithelial-based cancer types. Its effectiveness was validated by assessing the consistency of these lncRNAs within various datasets of the same cancer type (hypergeometric test P < 0.001), examining the expression perturbation of these lncRNAs in response to treatment and demonstrating its application in prioritizing clinically-related lncRNAs. Furthermore, leveraging 820 epithelial ovarian cancer patients from four public datasets, we applied these lncRNAs identified by DDRLnc to establish and validate a risk stratification model to evaluate the benefits of platinum-based adjuvant chemotherapy for the improvement of clinical treatment outcomes. Comprehensive pan-cancer analysis illustrates the utility of computational framework in identifying potentially lncRNAs involved in DDR, thereby offering novel insights into the complex realm of cancer research, and it will become a valuable tool for identifying potential therapeutic targets for cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wwb发布了新的文献求助10
1秒前
搜集达人应助刘琪琪采纳,获得10
1秒前
1秒前
2秒前
SciGPT应助李一菲采纳,获得10
2秒前
lei.qin发布了新的文献求助20
3秒前
4秒前
keyu发布了新的文献求助10
4秒前
李佳宁完成签到,获得积分10
4秒前
海森堡完成签到,获得积分10
5秒前
炫炫炫发布了新的文献求助10
5秒前
noc关闭了noc文献求助
5秒前
Jasper应助LLL采纳,获得10
5秒前
6秒前
6秒前
6秒前
东矢目完成签到,获得积分10
7秒前
8秒前
柠静樨发布了新的文献求助10
8秒前
Accept完成签到,获得积分10
8秒前
斯文败类应助WNL采纳,获得10
8秒前
9秒前
CodeCraft应助梅花易数采纳,获得10
9秒前
林123a发布了新的文献求助10
9秒前
JQB完成签到,获得积分10
9秒前
春鹏完成签到,获得积分10
9秒前
star完成签到,获得积分0
10秒前
英俊的铭应助陈不沉采纳,获得10
10秒前
wsd完成签到 ,获得积分10
11秒前
zhangmengqi完成签到 ,获得积分10
12秒前
12秒前
英姑应助噔噔噔噔采纳,获得10
12秒前
daying完成签到,获得积分10
12秒前
hewd3发布了新的文献求助10
13秒前
慕青应助wang采纳,获得10
13秒前
13秒前
14秒前
15秒前
16秒前
Owen应助acarbose采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4988185
求助须知:如何正确求助?哪些是违规求助? 4237670
关于积分的说明 13200030
捐赠科研通 4031555
什么是DOI,文献DOI怎么找? 2205608
邀请新用户注册赠送积分活动 1217085
关于科研通互助平台的介绍 1135190