Computational identification of DNA damage-relevant lncRNAs for predicting therapeutic efficacy and clinical outcomes in cancer

计算生物学 一致性 计算机科学 生物信息学 生物
作者
Yixin Liu,Shan Huang,Guanghui Dong,Hou Chang,Yuming Zhao,Dandan Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:171: 108107-108107
标识
DOI:10.1016/j.compbiomed.2024.108107
摘要

The role of long non-coding RNAs (lncRNAs) in cancer treatment, particularly in modulating DNA repair programs, is an emerging field that warrants systematic exploration. This study aimed to systematically identify the lncRNA regulators that potentially regulate DNA damage response (DDR). Using genome-wide mRNA and lncRNA expression profiles of the same tumor patients, we proposed a novel computational framework. This framework performed Gene Set Variation Analysis to calculate DDR pathway enrichment score, which relies on weighting by tumor purity to obtain DDR activity score for each patient. Then, an in-depth differential expression profiling was conducted to identify pathway activity lncRNAs between high- and low-activity groups, utilizing a bootstrap-based randomization method. We comprehensively charted the landscape of DDR-relevant lncRNAs across 23 epithelial-based cancer types. Its effectiveness was validated by assessing the consistency of these lncRNAs within various datasets of the same cancer type (hypergeometric test P < 0.001), examining the expression perturbation of these lncRNAs in response to treatment and demonstrating its application in prioritizing clinically-related lncRNAs. Furthermore, leveraging 820 epithelial ovarian cancer patients from four public datasets, we applied these lncRNAs identified by DDRLnc to establish and validate a risk stratification model to evaluate the benefits of platinum-based adjuvant chemotherapy for the improvement of clinical treatment outcomes. Comprehensive pan-cancer analysis illustrates the utility of computational framework in identifying potentially lncRNAs involved in DDR, thereby offering novel insights into the complex realm of cancer research, and it will become a valuable tool for identifying potential therapeutic targets for cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qwq应助追梦采纳,获得10
刚刚
刚刚
1秒前
我爱Chem完成签到 ,获得积分10
1秒前
半生发布了新的文献求助30
2秒前
2秒前
成就梦松完成签到,获得积分10
2秒前
byyyy完成签到,获得积分10
2秒前
温暖的俊驰完成签到,获得积分10
3秒前
Isabel完成签到,获得积分10
3秒前
yx应助陈强采纳,获得30
4秒前
sokach发布了新的文献求助10
6秒前
缓慢荔枝发布了新的文献求助10
6秒前
123发布了新的文献求助10
7秒前
天御雪完成签到,获得积分10
7秒前
gen关闭了gen文献求助
7秒前
7秒前
科研通AI5应助oldlee采纳,获得10
8秒前
8秒前
MADKAI发布了新的文献求助10
8秒前
哈哈悦完成签到,获得积分10
8秒前
赘婿应助duoduozs采纳,获得10
8秒前
kai完成签到,获得积分10
9秒前
9秒前
情怀应助xhy采纳,获得10
9秒前
整齐的灭绝完成签到 ,获得积分10
10秒前
充电宝应助船舵采纳,获得10
10秒前
lqphysics完成签到,获得积分10
10秒前
10秒前
小小完成签到 ,获得积分10
11秒前
320me666完成签到,获得积分10
12秒前
12秒前
velpro发布了新的文献求助10
13秒前
科研通AI5应助masu采纳,获得10
13秒前
小狸跟你拼啦完成签到,获得积分10
13秒前
寂寞的灵发布了新的文献求助10
13秒前
14秒前
honey完成签到,获得积分10
14秒前
白宝宝北北白应助eee采纳,获得10
14秒前
gcc应助HZW采纳,获得20
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672