Computational identification of DNA damage-relevant lncRNAs for predicting therapeutic efficacy and clinical outcomes in cancer

计算生物学 一致性 计算机科学 生物信息学 生物
作者
Yixin Liu,Shan Huang,Guanghui Dong,Hou Chang,Yuming Zhao,Dandan Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:171: 108107-108107
标识
DOI:10.1016/j.compbiomed.2024.108107
摘要

The role of long non-coding RNAs (lncRNAs) in cancer treatment, particularly in modulating DNA repair programs, is an emerging field that warrants systematic exploration. This study aimed to systematically identify the lncRNA regulators that potentially regulate DNA damage response (DDR). Using genome-wide mRNA and lncRNA expression profiles of the same tumor patients, we proposed a novel computational framework. This framework performed Gene Set Variation Analysis to calculate DDR pathway enrichment score, which relies on weighting by tumor purity to obtain DDR activity score for each patient. Then, an in-depth differential expression profiling was conducted to identify pathway activity lncRNAs between high- and low-activity groups, utilizing a bootstrap-based randomization method. We comprehensively charted the landscape of DDR-relevant lncRNAs across 23 epithelial-based cancer types. Its effectiveness was validated by assessing the consistency of these lncRNAs within various datasets of the same cancer type (hypergeometric test P < 0.001), examining the expression perturbation of these lncRNAs in response to treatment and demonstrating its application in prioritizing clinically-related lncRNAs. Furthermore, leveraging 820 epithelial ovarian cancer patients from four public datasets, we applied these lncRNAs identified by DDRLnc to establish and validate a risk stratification model to evaluate the benefits of platinum-based adjuvant chemotherapy for the improvement of clinical treatment outcomes. Comprehensive pan-cancer analysis illustrates the utility of computational framework in identifying potentially lncRNAs involved in DDR, thereby offering novel insights into the complex realm of cancer research, and it will become a valuable tool for identifying potential therapeutic targets for cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿朱嘻嘻完成签到,获得积分10
1秒前
Lucas应助故意的怜晴采纳,获得10
1秒前
李爱国应助哈哈采纳,获得10
1秒前
65556完成签到,获得积分10
1秒前
文艺映之发布了新的文献求助10
2秒前
deng发布了新的文献求助10
2秒前
xudanhong发布了新的文献求助10
3秒前
怕孤独的傲丝完成签到,获得积分10
3秒前
3秒前
快乐的晟睿完成签到,获得积分10
3秒前
Lzq发布了新的文献求助10
5秒前
烟花应助小凉采纳,获得10
8秒前
Ava应助kingmantj采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
LH完成签到,获得积分10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
彭于晏应助花花采纳,获得10
9秒前
山复尔尔应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
万能图书馆应助大观天下采纳,获得10
10秒前
乔垣结衣应助科研通管家采纳,获得10
10秒前
ED应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
10秒前
ding应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
怕黑的静蕾应助科研鸟采纳,获得10
10秒前
牛轧唐应助科研通管家采纳,获得20
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
可爱的函函应助xxx采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966626
求助须知:如何正确求助?哪些是违规求助? 3512116
关于积分的说明 11161791
捐赠科研通 3246949
什么是DOI,文献DOI怎么找? 1793633
邀请新用户注册赠送积分活动 874509
科研通“疑难数据库(出版商)”最低求助积分说明 804420