Global sensitivity analysis for studying hot-mix asphalt dynamic modulus parameters

级配 灵敏度(控制系统) 人工神经网络 参数统计 残余物 沥青 计算机科学 拉丁超立方体抽样 计量经济学 数据挖掘 机器学习 工程类 统计 人工智能 算法 数学 地理 地图学 电子工程 蒙特卡罗方法
作者
Mahmoud Owais,Ghada S. Moussa
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:413: 134775-134775
标识
DOI:10.1016/j.conbuildmat.2023.134775
摘要

The dynamic modulus (E*) of hot-mix asphalt mixtures is one of the most laborious and time-consuming material parameters to measure in the laboratory. It involves expensive, specialized equipment and expertize that are not readily available in most laboratories. Consequently, several efforts have been devoted to E* prediction models. Unfortunately, developing these prediction models is complex because of the numerous contributory factors and their non-linear influence on E* values. Moreover, such models are not able to prioritize or screen the major factors influencing the E* values. This study presents a new framework for analyzing the dynamic modulus influencing factors by adopting two modeling approaches. First, deep residual neural networks (DRNNs) for non-parametric approaches are used to improve the E* prediction capabilities and derive deep insight into the contributory parameters' effect on the E* value. Second, the well-known Witczak 1–40D prediction equation is used as a representative of the classical statistical modeling approach. In the validation of the models, a comprehensive laboratory database is utilized to account for all significant contributory parameters, such as binder characteristics, volumetric properties, mixture gradation, and testing circumstances parameters. Then, the performance is assessed using typical performance metrics. Lastly, intensive global sensitivity analysis (GSA) is undertaken with the assistance of Latin Hypercube Simulation. Three distinct GSA methods are used to emphasize the influence of each contributory factor on the value of E* in actual practice while reducing the possibility for result distortion owing to correlations between contributory variables. Performance metrics of the DRNNs and the Witczak 1–40D prediction models give the GSA conclusions high credibility. The GSA reveals that, among all possible inputs, the binder content, shear modulus, voids in the mineral aggregates, and temperature are the most significant factors in determining the E* value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粘豆包发布了新的文献求助10
1秒前
yoowt完成签到,获得积分10
1秒前
万能图书馆应助幌子采纳,获得10
1秒前
能干砖家完成签到,获得积分10
2秒前
3秒前
eternal发布了新的文献求助10
3秒前
sqrt138发布了新的文献求助10
3秒前
TT发布了新的文献求助10
3秒前
largedream发布了新的文献求助10
4秒前
4秒前
kk发布了新的文献求助10
4秒前
科研通AI2S应助GillianRan采纳,获得10
4秒前
zzz完成签到,获得积分10
4秒前
5秒前
5秒前
wu完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
杳鸢应助tianzml0采纳,获得10
6秒前
科研通AI2S应助tansl1989采纳,获得10
7秒前
7秒前
小白完成签到,获得积分10
7秒前
大模型应助Freedom采纳,获得10
8秒前
热心不凡完成签到,获得积分10
8秒前
健忘的靖柏应助CHENXIN532采纳,获得10
8秒前
libai完成签到,获得积分10
9秒前
9秒前
lhs发布了新的文献求助10
9秒前
LL发布了新的文献求助10
10秒前
领导范儿应助一地狗粮采纳,获得10
10秒前
Ryan完成签到,获得积分10
10秒前
10秒前
11秒前
越宝发布了新的文献求助10
12秒前
好了没了发布了新的文献求助20
12秒前
顾矜应助周女士采纳,获得10
12秒前
三眼乌鸦发布了新的文献求助10
13秒前
13秒前
13秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222065
求助须知:如何正确求助?哪些是违规求助? 2870675
关于积分的说明 8171823
捐赠科研通 2537764
什么是DOI,文献DOI怎么找? 1369673
科研通“疑难数据库(出版商)”最低求助积分说明 645558
邀请新用户注册赠送积分活动 619270