已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Global sensitivity analysis for studying hot-mix asphalt dynamic modulus parameters

级配 灵敏度(控制系统) 人工神经网络 参数统计 残余物 沥青 计算机科学 拉丁超立方体抽样 计量经济学 数据挖掘 机器学习 工程类 统计 人工智能 算法 数学 地理 地图学 电子工程 蒙特卡罗方法
作者
Mahmoud Owais,Ghada S. Moussa
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:413: 134775-134775
标识
DOI:10.1016/j.conbuildmat.2023.134775
摘要

The dynamic modulus (E*) of hot-mix asphalt mixtures is one of the most laborious and time-consuming material parameters to measure in the laboratory. It involves expensive, specialized equipment and expertize that are not readily available in most laboratories. Consequently, several efforts have been devoted to E* prediction models. Unfortunately, developing these prediction models is complex because of the numerous contributory factors and their non-linear influence on E* values. Moreover, such models are not able to prioritize or screen the major factors influencing the E* values. This study presents a new framework for analyzing the dynamic modulus influencing factors by adopting two modeling approaches. First, deep residual neural networks (DRNNs) for non-parametric approaches are used to improve the E* prediction capabilities and derive deep insight into the contributory parameters' effect on the E* value. Second, the well-known Witczak 1–40D prediction equation is used as a representative of the classical statistical modeling approach. In the validation of the models, a comprehensive laboratory database is utilized to account for all significant contributory parameters, such as binder characteristics, volumetric properties, mixture gradation, and testing circumstances parameters. Then, the performance is assessed using typical performance metrics. Lastly, intensive global sensitivity analysis (GSA) is undertaken with the assistance of Latin Hypercube Simulation. Three distinct GSA methods are used to emphasize the influence of each contributory factor on the value of E* in actual practice while reducing the possibility for result distortion owing to correlations between contributory variables. Performance metrics of the DRNNs and the Witczak 1–40D prediction models give the GSA conclusions high credibility. The GSA reveals that, among all possible inputs, the binder content, shear modulus, voids in the mineral aggregates, and temperature are the most significant factors in determining the E* value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
完美世界应助aiai采纳,获得10
2秒前
焦立超发布了新的文献求助10
2秒前
Limin完成签到,获得积分10
3秒前
Blackrose2412完成签到,获得积分10
4秒前
小白完成签到 ,获得积分10
5秒前
泡泡鱼完成签到 ,获得积分10
8秒前
科目三应助刘佳慧采纳,获得10
8秒前
9秒前
肚皮完成签到 ,获得积分10
11秒前
14秒前
14秒前
Jemma发布了新的文献求助10
19秒前
19秒前
初见发布了新的文献求助10
20秒前
aiai发布了新的文献求助10
20秒前
焦立超发布了新的文献求助10
22秒前
马户的崛起完成签到,获得积分10
23秒前
Hodlumm发布了新的文献求助10
24秒前
小瓜完成签到 ,获得积分10
26秒前
封迎松完成签到 ,获得积分10
28秒前
28秒前
wanci应助kingking采纳,获得10
29秒前
一只呆呆完成签到 ,获得积分10
29秒前
ding应助AC赵先生采纳,获得10
29秒前
32秒前
我是老大应助追寻的城采纳,获得10
33秒前
温婉的香氛发布了新的文献求助100
33秒前
JamesPei应助HelloKun采纳,获得10
35秒前
研友_VZG7GZ应助Hodlumm采纳,获得10
36秒前
General发布了新的文献求助10
37秒前
喝杯水再走完成签到,获得积分10
37秒前
38秒前
38秒前
39秒前
39秒前
向日葵完成签到,获得积分10
40秒前
阿叶同学完成签到,获得积分10
40秒前
超人爱吃菠菜完成签到,获得积分10
41秒前
陈志宏发布了新的文献求助10
42秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976455
求助须知:如何正确求助?哪些是违规求助? 3520548
关于积分的说明 11203728
捐赠科研通 3257156
什么是DOI,文献DOI怎么找? 1798618
邀请新用户注册赠送积分活动 877819
科研通“疑难数据库(出版商)”最低求助积分说明 806523