已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Spatio-temporal fusion graph convolutional network for traffic flow forecasting

计算机科学 图形 相关性 系列(地层学) 数据挖掘 突出 深度学习 时间序列 人工智能 机器学习 理论计算机科学 数学 古生物学 几何学 生物
作者
Ying Ma,H. Lou,Ming Yan,Fanghui Sun,Guoqi Li
出处
期刊:Information Fusion [Elsevier BV]
卷期号:104: 102196-102196 被引量:25
标识
DOI:10.1016/j.inffus.2023.102196
摘要

In most recent research, the traffic forecasting task is typically formulated as a spatio-temporal graph modeling problem. For spatial correlation, they typically learn the shared pattern (i.e., the most salient pattern) of traffic series and measure the interdependence between traffic series based on a predefined graph. On the one hand, learning a specific traffic pattern for each node (traffic series) is crucial and essential for accurate spatial correlation learning. On the other hand, most predefined graphs cannot accurately represent the interdependence between traffic series because they are unchangeable while the prediction task changes. For temporal correlation, they usually concentrate on contiguous temporal correlation. Therefore, they are insufficient due to their lack of global temporal correlation learning. To overcome these aforementioned limitations, we propose a novel method named Spatio-Temporal Fusion Graph Convolutional Network (STFGCN). In the spatial aspect, we introduce a node-specific graph convolution operation to learn the node-specific patterns of each node (traffic series). Then, an adaptive adjacent matrix is introduced to represent the interdependence between traffic series. In the temporal aspect, a contiguous temporal correlation learning module is introduced to learn the contiguous temporal correlation of traffic series. Furthermore, a transformer-based global temporal correlation learning module is introduced to learn the global dependence of the traffic series. Experimental results show that our method significantly outperforms other competitive methods on two real-world traffic datasets (PeMSD4 and PeMSD8).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哲哲哲哲完成签到,获得积分10
2秒前
小洁完成签到 ,获得积分10
4秒前
尊敬书本发布了新的文献求助10
5秒前
Zinc完成签到,获得积分10
7秒前
10秒前
顾矜应助祁尒采纳,获得10
12秒前
无私绿兰完成签到 ,获得积分10
13秒前
dssdadadds发布了新的文献求助10
16秒前
一杆长空发布了新的文献求助10
20秒前
20秒前
Zhuo完成签到 ,获得积分10
21秒前
华生发布了新的文献求助10
21秒前
彭于晏应助dssdadadds采纳,获得10
21秒前
curry完成签到 ,获得积分10
23秒前
25秒前
中国人发布了新的文献求助10
27秒前
量子星尘发布了新的文献求助10
27秒前
Lucas应助科研通管家采纳,获得10
28秒前
所所应助科研通管家采纳,获得10
28秒前
Hello应助科研通管家采纳,获得10
28秒前
打打应助科研通管家采纳,获得10
28秒前
充电宝应助科研通管家采纳,获得10
28秒前
风清扬应助科研通管家采纳,获得10
28秒前
彭于晏应助科研通管家采纳,获得10
28秒前
小蘑菇应助科研通管家采纳,获得10
28秒前
思源应助科研通管家采纳,获得10
28秒前
29秒前
李健应助hhchhcmxhf采纳,获得10
29秒前
29秒前
bkagyin应助月光入梦采纳,获得10
31秒前
难过小懒虫完成签到,获得积分10
31秒前
31秒前
32秒前
Snieno完成签到,获得积分10
32秒前
逆天大脚完成签到,获得积分10
32秒前
33秒前
35秒前
L_93发布了新的文献求助10
36秒前
liuzi发布了新的文献求助10
36秒前
乐乐应助犹豫的铅笔采纳,获得10
37秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956731
求助须知:如何正确求助?哪些是违规求助? 3502835
关于积分的说明 11110432
捐赠科研通 3233801
什么是DOI,文献DOI怎么找? 1787571
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802172