Spatio-temporal fusion graph convolutional network for traffic flow forecasting

计算机科学 图形 相关性 系列(地层学) 数据挖掘 突出 深度学习 时间序列 人工智能 机器学习 理论计算机科学 数学 古生物学 几何学 生物
作者
Ying Ma,H. Lou,Ming Yan,Fanghui Sun,Guoqi Li
出处
期刊:Information Fusion [Elsevier BV]
卷期号:104: 102196-102196 被引量:25
标识
DOI:10.1016/j.inffus.2023.102196
摘要

In most recent research, the traffic forecasting task is typically formulated as a spatio-temporal graph modeling problem. For spatial correlation, they typically learn the shared pattern (i.e., the most salient pattern) of traffic series and measure the interdependence between traffic series based on a predefined graph. On the one hand, learning a specific traffic pattern for each node (traffic series) is crucial and essential for accurate spatial correlation learning. On the other hand, most predefined graphs cannot accurately represent the interdependence between traffic series because they are unchangeable while the prediction task changes. For temporal correlation, they usually concentrate on contiguous temporal correlation. Therefore, they are insufficient due to their lack of global temporal correlation learning. To overcome these aforementioned limitations, we propose a novel method named Spatio-Temporal Fusion Graph Convolutional Network (STFGCN). In the spatial aspect, we introduce a node-specific graph convolution operation to learn the node-specific patterns of each node (traffic series). Then, an adaptive adjacent matrix is introduced to represent the interdependence between traffic series. In the temporal aspect, a contiguous temporal correlation learning module is introduced to learn the contiguous temporal correlation of traffic series. Furthermore, a transformer-based global temporal correlation learning module is introduced to learn the global dependence of the traffic series. Experimental results show that our method significantly outperforms other competitive methods on two real-world traffic datasets (PeMSD4 and PeMSD8).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
哈哈哈哈哈哈完成签到,获得积分10
1秒前
金小豪完成签到,获得积分10
1秒前
xxl发布了新的文献求助10
1秒前
on完成签到,获得积分10
1秒前
1秒前
Sera完成签到,获得积分20
2秒前
古药完成签到,获得积分10
2秒前
drjim完成签到,获得积分10
3秒前
柚子发布了新的文献求助10
3秒前
我的账号完成签到,获得积分10
3秒前
3秒前
研友_89jWGL完成签到,获得积分10
4秒前
4秒前
过客发布了新的文献求助50
5秒前
杨杰发布了新的文献求助10
5秒前
半生瓜完成签到,获得积分10
5秒前
清脆半邪完成签到,获得积分10
5秒前
来了完成签到,获得积分10
5秒前
starry完成签到,获得积分10
6秒前
大模型应助violetlishu采纳,获得20
6秒前
zz发布了新的文献求助10
6秒前
张泽宇完成签到,获得积分10
7秒前
唠叨的白曼完成签到,获得积分10
7秒前
香蕉觅云应助Jerry采纳,获得20
7秒前
NexusExplorer应助ZHB采纳,获得30
8秒前
8秒前
8秒前
小明应助落落采纳,获得10
8秒前
可爱的函函应助Sera采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
英姑应助chengs采纳,获得10
9秒前
火星上的雨柏完成签到 ,获得积分10
9秒前
科研通AI5应助jyyg采纳,获得30
10秒前
芦泸发布了新的文献求助10
10秒前
JamesPei应助不来也不去采纳,获得10
11秒前
聚砂成塔完成签到,获得积分10
11秒前
大鸟依人完成签到 ,获得积分10
12秒前
勇敢虫子不怕困难完成签到,获得积分10
12秒前
cc完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600144
求助须知:如何正确求助?哪些是违规求助? 4010398
关于积分的说明 12416277
捐赠科研通 3690163
什么是DOI,文献DOI怎么找? 2034179
邀请新用户注册赠送积分活动 1067543
科研通“疑难数据库(出版商)”最低求助积分说明 952426