Spatio-temporal fusion graph convolutional network for traffic flow forecasting

计算机科学 图形 相关性 系列(地层学) 数据挖掘 突出 深度学习 时间序列 人工智能 机器学习 理论计算机科学 数学 古生物学 几何学 生物
作者
Ying Ma,H. Lou,Ming Yan,Fanghui Sun,Guoqi Li
出处
期刊:Information Fusion [Elsevier]
卷期号:104: 102196-102196 被引量:11
标识
DOI:10.1016/j.inffus.2023.102196
摘要

In most recent research, the traffic forecasting task is typically formulated as a spatio-temporal graph modeling problem. For spatial correlation, they typically learn the shared pattern (i.e., the most salient pattern) of traffic series and measure the interdependence between traffic series based on a predefined graph. On the one hand, learning a specific traffic pattern for each node (traffic series) is crucial and essential for accurate spatial correlation learning. On the other hand, most predefined graphs cannot accurately represent the interdependence between traffic series because they are unchangeable while the prediction task changes. For temporal correlation, they usually concentrate on contiguous temporal correlation. Therefore, they are insufficient due to their lack of global temporal correlation learning. To overcome these aforementioned limitations, we propose a novel method named Spatio-Temporal Fusion Graph Convolutional Network (STFGCN). In the spatial aspect, we introduce a node-specific graph convolution operation to learn the node-specific patterns of each node (traffic series). Then, an adaptive adjacent matrix is introduced to represent the interdependence between traffic series. In the temporal aspect, a contiguous temporal correlation learning module is introduced to learn the contiguous temporal correlation of traffic series. Furthermore, a transformer-based global temporal correlation learning module is introduced to learn the global dependence of the traffic series. Experimental results show that our method significantly outperforms other competitive methods on two real-world traffic datasets (PeMSD4 and PeMSD8).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细腻曼冬完成签到 ,获得积分10
刚刚
刚刚
刚刚
9209完成签到 ,获得积分10
刚刚
1秒前
ranqi发布了新的文献求助10
1秒前
云落完成签到,获得积分10
1秒前
田様应助杨枝甘露樱桃采纳,获得10
1秒前
冲浪男孩226完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
3秒前
3秒前
现实的曼荷关注了科研通微信公众号
3秒前
3秒前
邓佳鑫Alan应助uniphoton采纳,获得10
3秒前
3秒前
英姑应助cc采纳,获得10
3秒前
MM完成签到,获得积分10
4秒前
lyn发布了新的文献求助10
4秒前
koipp发布了新的文献求助10
4秒前
Rebecca发布了新的文献求助10
5秒前
pinging应助愉快冰淇淋采纳,获得10
5秒前
不厌发布了新的文献求助100
5秒前
6秒前
cherry发布了新的文献求助10
6秒前
CodeCraft应助马洛采纳,获得10
7秒前
十七完成签到,获得积分10
7秒前
8秒前
兴奋汽车完成签到,获得积分10
8秒前
学就完了完成签到,获得积分10
8秒前
张志顺发布了新的文献求助10
8秒前
岁月轮回发布了新的文献求助10
8秒前
长情洙发布了新的文献求助10
8秒前
Rickstein完成签到,获得积分10
9秒前
炙热冰夏完成签到,获得积分10
9秒前
iNk应助兴奋汽车采纳,获得10
10秒前
共享精神应助kingwhitewing采纳,获得10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762