清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Radiomics-based prediction of local control in patients with brain metastases following postoperative stereotactic radiotherapy

医学 一致性 队列 回顾性队列研究 放射外科 放射治疗 放射科 流体衰减反转恢复 磁共振成像 肿瘤科 内科学
作者
Josef A. Buchner,Florian Kofler,Michael Mayinger,Sebastian M. Christ,Thomas Brunner,Andrea Wittig,Bjoern Menze,Claus Zimmer,Bernhard Meyer,Matthias Gückenberger,Nicolaus Andratschke,Rami A. El Shafie,Jürgen Debus,Susanne Rogers,Oliver Riesterer,Katrin Schulze,Horst Jürgen Feldmann,Oliver Blanck,Constantinos Zamboglou,Konstantinos Ferentinos,Angelika Bilger-Zähringer,Anca‐Ligia Grosu,Robert Wolff,Marie Piraud,Kerstin A. Eitz,Stephanie E. Combs,Denise Bernhardt,Daniel Rueckert,Benedikt Wiestler,Jan C. Peeken
出处
期刊:Cold Spring Harbor Laboratory - medRxiv
标识
DOI:10.1101/2024.01.03.24300782
摘要

Abstract Background Surgical resection is the standard of care for patients with large or symptomatic brain metastases (BMs). Despite improved local control after adjuvant stereotactic radiotherapy, the local failure (LF) risk persists. Therefore, we aimed to develop and externally validate a pre-therapeutic radiomics-based prediction tool to identify patients at high LF risk. Methods Data were collected from A Multicenter Analysis of Stereotactic Radiotherapy to the Resection Cavity of Brain Metastases (AURORA) retrospective study (training cohort: 253 patients (two centers); external test cohort: 99 patients (five centers)). Radiomic features were extracted from the contrast-enhancing BM (T1-CE MRI sequence) and the surrounding edema (FLAIR sequence). Different combinations of radiomic and clinical features were compared. The final models were trained on the entire training cohort with the best parameters previously determined by internal 5-fold cross-validation and tested on the external test set. Results The best performance in the external test was achieved by an elastic net regression model trained with a combination of radiomic and clinical features with a concordance index (CI) of 0.77, outperforming any clinical model (best CI: 0.70). The model effectively stratified patients by LF risk in a Kaplan-Meier analysis (p < 0.001) and demonstrated an incremental net clinical benefit. At 24 months, we found LF in 9% and 74% of the low and high-risk groups, respectively. Conclusions A combination of clinical and radiomic features predicted freedom from LF better than any clinical feature set alone. Patients at high risk for LF may benefit from stricter follow-up routines or intensified therapy. Key points Radiomics can predict the freedom from local failure in brain metastasis patients Clinical and MRI-based radiomic features combined performed better than either alone The proposed model significantly stratifies patients according to their risk Importance of the Study Local failure after treatment of brain metastases has a severe impact on patients, often resulting in additional therapy and loss of quality of life. This multicenter study investigated the possibility of predicting local failure of brain metastases after surgical resection and stereotactic radiotherapy using radiomic features extracted from the contrast-enhancing metastases and the surrounding FLAIR-hyperintense edema. By interpreting this as a survival task rather than a classification task, we were able to predict the freedom from failure probability at different time points and appropriately account for the censoring present in clinical time-to-event data. We found that synergistically combining clinical and imaging data performed better than either alone in the multicenter external test cohort, highlighting the potential of multimodal data analysis in this challenging task. Our results could improve the management of patients with brain metastases by tailoring follow-up and therapy to their individual risk of local failure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kumquat完成签到,获得积分10
4秒前
光亮又晴完成签到 ,获得积分10
22秒前
wenbinvan完成签到,获得积分0
43秒前
woxinyouyou完成签到,获得积分0
2分钟前
7788完成签到,获得积分10
2分钟前
Kevin完成签到,获得积分10
3分钟前
3分钟前
微卫星不稳定完成签到 ,获得积分0
3分钟前
嬗变的天秤完成签到,获得积分10
3分钟前
3分钟前
3分钟前
枯藤老柳树完成签到,获得积分10
4分钟前
研友_nxw2xL完成签到,获得积分10
4分钟前
muriel完成签到,获得积分10
4分钟前
毛毛完成签到,获得积分10
5分钟前
ding应助残酷日光采纳,获得10
5分钟前
5分钟前
5分钟前
残酷日光发布了新的文献求助10
5分钟前
himat完成签到,获得积分10
5分钟前
6分钟前
去去去去发布了新的文献求助10
6分钟前
陳某完成签到,获得积分10
6分钟前
CaoJing完成签到 ,获得积分10
6分钟前
Richard完成签到 ,获得积分10
7分钟前
FUNG发布了新的文献求助10
8分钟前
ldd关闭了ldd文献求助
9分钟前
榴下晨光完成签到 ,获得积分10
9分钟前
啥时候吃火锅完成签到 ,获得积分0
9分钟前
lovelife完成签到,获得积分10
9分钟前
ldd关闭了ldd文献求助
10分钟前
Bond完成签到 ,获得积分10
10分钟前
万能图书馆应助cassie采纳,获得10
10分钟前
仿真小学生完成签到 ,获得积分10
11分钟前
kohu完成签到,获得积分10
11分钟前
ldd发布了新的文献求助10
11分钟前
宇文非笑完成签到 ,获得积分10
11分钟前
lotus完成签到,获得积分10
12分钟前
方白秋完成签到,获得积分10
13分钟前
ldd发布了新的文献求助10
14分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142753
求助须知:如何正确求助?哪些是违规求助? 2793651
关于积分的说明 7807068
捐赠科研通 2449921
什么是DOI,文献DOI怎么找? 1303531
科研通“疑难数据库(出版商)”最低求助积分说明 627016
版权声明 601335