Radiomics-based prediction of local control in patients with brain metastases following postoperative stereotactic radiotherapy

医学 一致性 队列 回顾性队列研究 放射外科 放射治疗 放射科 流体衰减反转恢复 磁共振成像 肿瘤科 内科学
作者
Josef A. Buchner,Florian Kofler,Michael Mayinger,Sebastian M. Christ,Thomas Brunner,Andrea Wittig,Bjoern Menze,Claus Zimmer,Bernhard Meyer,Matthias Gückenberger,Nicolaus Andratschke,Rami A. El Shafie,Jürgen Debus,Susanne Rogers,Oliver Riesterer,Katrin Schulze,Horst Jürgen Feldmann,Oliver Blanck,Constantinos Zamboglou,Konstantinos Ferentinos,Angelika Bilger-Zähringer,Anca‐Ligia Grosu,Robert Wolff,Marie Piraud,Kerstin A. Eitz,Stephanie E. Combs,Denise Bernhardt,Daniel Rueckert,Benedikt Wiestler,Jan C. Peeken
出处
期刊:Cold Spring Harbor Laboratory - medRxiv
标识
DOI:10.1101/2024.01.03.24300782
摘要

Abstract Background Surgical resection is the standard of care for patients with large or symptomatic brain metastases (BMs). Despite improved local control after adjuvant stereotactic radiotherapy, the local failure (LF) risk persists. Therefore, we aimed to develop and externally validate a pre-therapeutic radiomics-based prediction tool to identify patients at high LF risk. Methods Data were collected from A Multicenter Analysis of Stereotactic Radiotherapy to the Resection Cavity of Brain Metastases (AURORA) retrospective study (training cohort: 253 patients (two centers); external test cohort: 99 patients (five centers)). Radiomic features were extracted from the contrast-enhancing BM (T1-CE MRI sequence) and the surrounding edema (FLAIR sequence). Different combinations of radiomic and clinical features were compared. The final models were trained on the entire training cohort with the best parameters previously determined by internal 5-fold cross-validation and tested on the external test set. Results The best performance in the external test was achieved by an elastic net regression model trained with a combination of radiomic and clinical features with a concordance index (CI) of 0.77, outperforming any clinical model (best CI: 0.70). The model effectively stratified patients by LF risk in a Kaplan-Meier analysis (p < 0.001) and demonstrated an incremental net clinical benefit. At 24 months, we found LF in 9% and 74% of the low and high-risk groups, respectively. Conclusions A combination of clinical and radiomic features predicted freedom from LF better than any clinical feature set alone. Patients at high risk for LF may benefit from stricter follow-up routines or intensified therapy. Key points Radiomics can predict the freedom from local failure in brain metastasis patients Clinical and MRI-based radiomic features combined performed better than either alone The proposed model significantly stratifies patients according to their risk Importance of the Study Local failure after treatment of brain metastases has a severe impact on patients, often resulting in additional therapy and loss of quality of life. This multicenter study investigated the possibility of predicting local failure of brain metastases after surgical resection and stereotactic radiotherapy using radiomic features extracted from the contrast-enhancing metastases and the surrounding FLAIR-hyperintense edema. By interpreting this as a survival task rather than a classification task, we were able to predict the freedom from failure probability at different time points and appropriately account for the censoring present in clinical time-to-event data. We found that synergistically combining clinical and imaging data performed better than either alone in the multicenter external test cohort, highlighting the potential of multimodal data analysis in this challenging task. Our results could improve the management of patients with brain metastases by tailoring follow-up and therapy to their individual risk of local failure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
10秒前
Likz完成签到,获得积分10
10秒前
不安的秋白完成签到,获得积分10
12秒前
清新的剑心完成签到 ,获得积分10
13秒前
Yiling完成签到,获得积分10
13秒前
15秒前
氕氘氚完成签到 ,获得积分10
19秒前
Hello应助不安的秋白采纳,获得10
21秒前
糯米团的完成签到 ,获得积分10
22秒前
神勇从波完成签到 ,获得积分10
24秒前
yellow完成签到 ,获得积分10
26秒前
虚幻元风完成签到 ,获得积分10
29秒前
xybjt完成签到 ,获得积分10
32秒前
巴达天使完成签到,获得积分10
38秒前
江三村完成签到 ,获得积分10
38秒前
量子星尘发布了新的文献求助10
56秒前
CyberHamster完成签到,获得积分10
1分钟前
xiaohong完成签到,获得积分10
1分钟前
朱比特完成签到,获得积分10
1分钟前
1分钟前
zmuzhang2019发布了新的文献求助10
1分钟前
onestepcloser完成签到 ,获得积分0
1分钟前
zoe完成签到 ,获得积分10
1分钟前
发嗲的慕蕊完成签到 ,获得积分10
1分钟前
Linson完成签到,获得积分10
1分钟前
顾矜应助赵三岁采纳,获得10
1分钟前
yyy2025完成签到,获得积分10
1分钟前
木雨亦潇潇完成签到,获得积分10
1分钟前
香蕉觅云应助nine2652采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
芳华如梦完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
土豆丝完成签到 ,获得积分10
1分钟前
琦琦完成签到,获得积分10
2分钟前
zzzz完成签到,获得积分20
2分钟前
GEZIKU完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038039
求助须知:如何正确求助?哪些是违规求助? 3575756
关于积分的说明 11373782
捐赠科研通 3305574
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022