清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Radiomics-based prediction of local control in patients with brain metastases following postoperative stereotactic radiotherapy

医学 一致性 队列 回顾性队列研究 放射外科 放射治疗 放射科 流体衰减反转恢复 磁共振成像 肿瘤科 内科学
作者
Josef A. Buchner,Florian Kofler,Michael Mayinger,Sebastian M. Christ,Thomas Brunner,Andrea Wittig,Bjoern Menze,Claus Zimmer,Bernhard Meyer,Matthias Gückenberger,Nicolaus Andratschke,Rami A. El Shafie,Jürgen Debus,Susanne Rogers,Oliver Riesterer,Katrin Schulze,Horst Jürgen Feldmann,Oliver Blanck,Constantinos Zamboglou,Konstantinos Ferentinos,Angelika Bilger-Zähringer,Anca‐Ligia Grosu,Robert Wolff,Marie Piraud,Kerstin A. Eitz,Stephanie E. Combs,Denise Bernhardt,Daniel Rueckert,Benedikt Wiestler,Jan C. Peeken
出处
期刊:Cold Spring Harbor Laboratory - medRxiv
标识
DOI:10.1101/2024.01.03.24300782
摘要

Abstract Background Surgical resection is the standard of care for patients with large or symptomatic brain metastases (BMs). Despite improved local control after adjuvant stereotactic radiotherapy, the local failure (LF) risk persists. Therefore, we aimed to develop and externally validate a pre-therapeutic radiomics-based prediction tool to identify patients at high LF risk. Methods Data were collected from A Multicenter Analysis of Stereotactic Radiotherapy to the Resection Cavity of Brain Metastases (AURORA) retrospective study (training cohort: 253 patients (two centers); external test cohort: 99 patients (five centers)). Radiomic features were extracted from the contrast-enhancing BM (T1-CE MRI sequence) and the surrounding edema (FLAIR sequence). Different combinations of radiomic and clinical features were compared. The final models were trained on the entire training cohort with the best parameters previously determined by internal 5-fold cross-validation and tested on the external test set. Results The best performance in the external test was achieved by an elastic net regression model trained with a combination of radiomic and clinical features with a concordance index (CI) of 0.77, outperforming any clinical model (best CI: 0.70). The model effectively stratified patients by LF risk in a Kaplan-Meier analysis (p < 0.001) and demonstrated an incremental net clinical benefit. At 24 months, we found LF in 9% and 74% of the low and high-risk groups, respectively. Conclusions A combination of clinical and radiomic features predicted freedom from LF better than any clinical feature set alone. Patients at high risk for LF may benefit from stricter follow-up routines or intensified therapy. Key points Radiomics can predict the freedom from local failure in brain metastasis patients Clinical and MRI-based radiomic features combined performed better than either alone The proposed model significantly stratifies patients according to their risk Importance of the Study Local failure after treatment of brain metastases has a severe impact on patients, often resulting in additional therapy and loss of quality of life. This multicenter study investigated the possibility of predicting local failure of brain metastases after surgical resection and stereotactic radiotherapy using radiomic features extracted from the contrast-enhancing metastases and the surrounding FLAIR-hyperintense edema. By interpreting this as a survival task rather than a classification task, we were able to predict the freedom from failure probability at different time points and appropriately account for the censoring present in clinical time-to-event data. We found that synergistically combining clinical and imaging data performed better than either alone in the multicenter external test cohort, highlighting the potential of multimodal data analysis in this challenging task. Our results could improve the management of patients with brain metastases by tailoring follow-up and therapy to their individual risk of local failure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叶痕TNT完成签到 ,获得积分10
3秒前
zjw完成签到,获得积分10
5秒前
Andy完成签到 ,获得积分10
7秒前
MISA完成签到 ,获得积分10
7秒前
bookgg完成签到 ,获得积分10
9秒前
mendicant完成签到,获得积分10
18秒前
勤恳书包完成签到,获得积分10
26秒前
yang完成签到 ,获得积分10
29秒前
xianyaoz完成签到 ,获得积分0
29秒前
38秒前
Jasper应助无限的以亦采纳,获得10
39秒前
大方的荟完成签到,获得积分10
50秒前
小小王完成签到 ,获得积分10
53秒前
57秒前
gao完成签到 ,获得积分10
59秒前
张wx_100完成签到,获得积分10
59秒前
青雉流云完成签到,获得积分20
1分钟前
风中的蜜蜂完成签到,获得积分10
1分钟前
1分钟前
滕皓轩完成签到 ,获得积分20
1分钟前
航行天下完成签到 ,获得积分10
1分钟前
开心夏旋完成签到 ,获得积分10
1分钟前
资白玉完成签到 ,获得积分0
1分钟前
聪明的泡面完成签到 ,获得积分10
1分钟前
大轩完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
Kevin发布了新的文献求助10
1分钟前
violetlishu完成签到 ,获得积分10
1分钟前
1分钟前
干饭大王应助Echo_1995采纳,获得10
1分钟前
纯真的梦竹完成签到,获得积分10
2分钟前
Gary完成签到 ,获得积分10
2分钟前
wang5945完成签到 ,获得积分10
2分钟前
racill完成签到 ,获得积分10
2分钟前
踏实的南琴完成签到 ,获得积分10
2分钟前
fkwwdamocles完成签到,获得积分10
2分钟前
tyro完成签到,获得积分10
2分钟前
意境完成签到 ,获得积分10
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968543
求助须知:如何正确求助?哪些是违规求助? 3513358
关于积分的说明 11167312
捐赠科研通 3248700
什么是DOI,文献DOI怎么找? 1794453
邀请新用户注册赠送积分活动 875030
科研通“疑难数据库(出版商)”最低求助积分说明 804664