亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Recovering a clean background: A parallel deep network architecture for single-image deraining

计算机科学 人工智能 残余物 卷积神经网络 模式识别(心理学) 卷积(计算机科学) 图像(数学) 深度学习 背景(考古学) 网络体系结构 人工神经网络 领域(数学) 计算机视觉 算法 数学 地质学 古生物学 计算机安全 纯数学
作者
Nanrun Zhou,Jibin Deng,Meng Pang
出处
期刊:Pattern Recognition Letters [Elsevier]
卷期号:178: 153-159 被引量:5
标识
DOI:10.1016/j.patrec.2024.01.006
摘要

Deep convolutional neural networks have been popularly applied in single-image deraining recently. Nevertheless, as the network becomes deeper, it is easy to cause training over-fitting and performance saturation, particularly in the case of insufficient training data. In this paper, we report the design of a new network, namely parallel deraining convolutional neural network (PARDNet), for single-image deraining. Specifically, PARDNet adopts two parallel residual sub-networks based on different receptive fields to extract more comprehensive characteristics of the rain streaks, as well as decrease the depth of the network. The hybrid dilated convolution is employed to enlarge the sub-network's receptive field to capture more context information. The efficient channel attention module is integrated into the proposed PARDNet to capture rain streaks more effectively and preserve more background details. Furthermore, to facilitate the network training, the residual learning is also fused into PARDNet in a holistic way. Extensive experiments on synthetic and real-world rainy image datasets demonstrate the superiority of PARDNet for single-image deraining.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rita发布了新的文献求助10
4秒前
Hugo发布了新的文献求助20
6秒前
CipherSage应助超级野狼采纳,获得10
11秒前
沉静的毛衣完成签到,获得积分10
13秒前
小马甲应助Lh采纳,获得10
14秒前
22秒前
23秒前
温水完成签到 ,获得积分10
24秒前
超级野狼发布了新的文献求助10
27秒前
crx发布了新的文献求助10
27秒前
撒旦啊实打实的完成签到,获得积分10
33秒前
可爱的函函应助Guts采纳,获得10
38秒前
科研通AI6.1应助Guts采纳,获得10
38秒前
乐乐应助材料生采纳,获得10
39秒前
CodeCraft应助crx采纳,获得10
40秒前
淡淡的秋柳完成签到 ,获得积分10
49秒前
49秒前
和光同尘完成签到,获得积分10
51秒前
柚子完成签到 ,获得积分10
52秒前
材料生发布了新的文献求助10
54秒前
58秒前
1分钟前
万事胜意完成签到 ,获得积分10
1分钟前
1分钟前
minkeyantong完成签到 ,获得积分10
1分钟前
xintai完成签到,获得积分10
1分钟前
材料生完成签到,获得积分10
1分钟前
丘比特应助wu采纳,获得30
1分钟前
共享精神应助zhaoyali采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
CAOHOU应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
CAOHOU应助科研通管家采纳,获得10
1分钟前
CAOHOU应助科研通管家采纳,获得10
1分钟前
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754672
求助须知:如何正确求助?哪些是违规求助? 5488707
关于积分的说明 15380490
捐赠科研通 4893182
什么是DOI,文献DOI怎么找? 2631791
邀请新用户注册赠送积分活动 1579727
关于科研通互助平台的介绍 1535475