清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Noise-Induced Hearing Loss Prediction Model Based on Asymmetric Convolution for Workers Exposed to Complex Industrial Noise

噪音(视频) 计算机科学 卷积(计算机科学) 听力损失 噪声性听力损失 模式识别(心理学) 人工智能 语音识别 噪声暴露 人工神经网络 医学 听力学 图像(数学)
作者
Yu Tian,Haoqi Zhao,Peixian Li,Tianshu Zhou,Wei Qiu,Jingsong Li
出处
期刊:Ear and Hearing 卷期号:45 (3): 648-657 被引量:1
标识
DOI:10.1097/aud.0000000000001454
摘要

Current approaches for evaluating noise-induced hearing loss (NIHL), such as the International Standards Organization 1999 (ISO) 1999 prediction model, rely mainly on noise energy and exposure time, thus ignoring the intricate time-frequency characteristics of noise, which also play an important role in NIHL evaluation. In this study, an innovative NIHL prediction model based on temporal and spectral feature extraction using an asymmetric convolution algorithm is proposed.Personal data and individual occupational noise records from 2214 workers across 23 factories in Zhejiang Province, China, were used in this study. In addition to traditional metrics like noise energy and exposure duration, the importance of time-frequency features in NIHL assessment was also emphasized. To capture these features, operations such as random sampling, windowing, short-time Fourier transform, and splicing were performed to create time-frequency spectrograms from noise recordings. Two asymmetric convolution kernels then were used to extract these critical features. These features, combined with personal information (e.g., age, length of service) in various configurations, were used as model inputs. The optimal network structure was selected based on the area under the curve (AUC) from 10-fold cross-validation, alongside the Wilcoxon signed ranks test. The proposed model was compared with the support vector machine (SVM) and ISO 1999 models, and the superiority of the new approach was verified by ablation experiments.The proposed model had an AUC of 0.7768 ± 0.0223 (mean ± SD), outperforming both the SVM model (AUC: 0.7504 ± 0.0273) and the ISO 1999 model (AUC: 0.5094 ± 0.0071). Wilcoxon signed ranks tests confirmed the significant improvement of the proposed model ( p = 0.0025 compared with ISO 1999, and p = 0.00142 compared with SVM).This study introduced a new NIHL prediction method that provides deeper insights into industrial noise exposure data. The results demonstrated the superior performance of the new model over ISO 1999 and SVM models. By combining time-frequency features and personal information, the proposed approach bridged the gap between conventional noise assessment and machine learning-based methods, effectively improving the ability to protect workers' hearing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰子完成签到 ,获得积分10
4秒前
跳跃的访琴完成签到 ,获得积分10
16秒前
哭泣的映寒完成签到 ,获得积分10
29秒前
vincy完成签到 ,获得积分10
36秒前
dbdxyty完成签到,获得积分10
51秒前
寒战完成签到 ,获得积分10
1分钟前
荔枝波波加油完成签到 ,获得积分10
1分钟前
娇娇大王完成签到,获得积分10
1分钟前
xun发布了新的文献求助10
1分钟前
大个应助xun采纳,获得10
1分钟前
lwtsy完成签到,获得积分10
1分钟前
zhoulangorange完成签到 ,获得积分10
1分钟前
JamesPei应助尽我所能采纳,获得10
1分钟前
念工人完成签到,获得积分10
1分钟前
大雁完成签到 ,获得积分10
2分钟前
XMUZH完成签到 ,获得积分10
2分钟前
科研通AI2S应助MCCCCC_6采纳,获得30
2分钟前
theo完成签到 ,获得积分10
2分钟前
yinhe完成签到 ,获得积分10
2分钟前
2分钟前
罗小罗同学完成签到,获得积分10
2分钟前
尽我所能发布了新的文献求助10
2分钟前
尽我所能完成签到,获得积分10
2分钟前
陈秋完成签到,获得积分10
2分钟前
黄光完成签到,获得积分10
3分钟前
3分钟前
gaoxiaogao完成签到 ,获得积分10
3分钟前
xun发布了新的文献求助10
3分钟前
潇洒的语蝶完成签到 ,获得积分10
3分钟前
思源应助xun采纳,获得10
3分钟前
3分钟前
大熊发布了新的文献求助10
3分钟前
老宇126完成签到,获得积分10
3分钟前
3分钟前
xun发布了新的文献求助10
3分钟前
Lucas应助xun采纳,获得10
3分钟前
宸浅完成签到 ,获得积分10
3分钟前
清净163完成签到,获得积分10
4分钟前
4分钟前
xun发布了新的文献求助10
4分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162359
求助须知:如何正确求助?哪些是违规求助? 2813331
关于积分的说明 7899783
捐赠科研通 2472848
什么是DOI,文献DOI怎么找? 1316544
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602142