Controlled interfacial reactions with Co2P nanoparticles onto natural graphite anode for fast-charging lithium-ion batteries

阳极 材料科学 锂(药物) 电解质 纳米颗粒 过电位 磷化物 电化学 化学工程 石墨 纳米技术 电极 化学 复合材料 冶金 金属 物理化学 内分泌学 工程类 医学
作者
Won Ung Jeong,Joo Hyeong Suh,Dong Ki Kim,Yoojin Hong,Sang‐Min Lee,Min‐Sik Park
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:482: 148805-148805 被引量:2
标识
DOI:10.1016/j.cej.2024.148805
摘要

Natural graphite (NG) is widely utilized as a practical anode in commercial lithium-ion batteries (LIBs) thanks to its high theoretical capacity and low operating voltage as well as high reversibility for Li+ storage. Recently, there has been a strong need to further enhance the fast-charging capability and reduce the charging time of NG for use in expanding electric vehicle applications. To enhance the charging performance of NG, various approaches have been explored to make its surface favorable for fast Li+ intercalation. Herein, we propose a surface modification of NG with functional cobalt phosphide (Co2P). Co2P nanoparticles can be introduced onto NG particles via a thermally induced phase transition process. Various structural and electrochemical investigations have provided insights into the crucial functions and reaction mechanisms of Co2P nanoparticles. We demonstrated that electrochemical conversion reactions of Co2P nanoparticles occurred during the first charging process, and the resulting phases induced effective surface stabilization and high-voltage operation during subsequent cycles. In particular, lithium phosphide (LiP and Li3P) formation is mainly responsible for reducing the overpotential for interfacial reactions between NG and the electrolyte, leading to the effective Li plating suppression and an increase in reversibility during cycles. In practice, the full-cell employing the Co2P@NG anode offered a superior cycling performance over 300 cycles and a charging time of 16.1 min (80 % SOC). We expect our findings make a valuable contribution to the advancement of fast-charging LIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
天天快乐应助CO2采纳,获得10
刚刚
隐形曼青应助junzilan采纳,获得10
1秒前
Dksido发布了新的文献求助10
1秒前
2秒前
思源应助卓哥采纳,获得10
2秒前
mysci完成签到,获得积分10
5秒前
6秒前
Quzhengkai发布了新的文献求助10
7秒前
7秒前
8秒前
落寞晓灵完成签到,获得积分10
8秒前
ORAzzz应助翠翠采纳,获得20
9秒前
zoe完成签到,获得积分10
9秒前
习习应助学术小白采纳,获得10
9秒前
10秒前
11秒前
tianny关注了科研通微信公众号
12秒前
12秒前
CO2发布了新的文献求助10
12秒前
桐桐应助zhangscience采纳,获得10
13秒前
求助发布了新的文献求助10
14秒前
buno应助zoe采纳,获得10
15秒前
junzilan发布了新的文献求助10
15秒前
15秒前
细品岁月完成签到 ,获得积分10
15秒前
细心书蕾完成签到 ,获得积分10
16秒前
无花果应助l11x29采纳,获得10
18秒前
18秒前
老詹头发布了新的文献求助10
18秒前
思源应助叫滚滚采纳,获得10
19秒前
20秒前
刘歌完成签到 ,获得积分10
20秒前
阿巡完成签到,获得积分10
20秒前
Chen完成签到,获得积分10
22秒前
LSH970829发布了新的文献求助10
22秒前
哈哈哈完成签到 ,获得积分10
23秒前
汤姆完成签到,获得积分10
23秒前
25秒前
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808