PolypMixNet: Enhancing semi-supervised polyp segmentation with polyp-aware augmentation

计算机科学 分割 人工智能 一致性(知识库) 机器学习 水准点(测量) 结肠镜检查 背景(考古学) 模式识别(心理学) 结直肠癌 医学 癌症 大地测量学 内科学 地理 古生物学 生物
作者
Xiao Jia,Yutian Shen,Yang Jian-hong,Ran Song,Wei Zhang,Max Q.‐H. Meng,Joseph C. Liao,Lei Xing
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:170: 108006-108006 被引量:11
标识
DOI:10.1016/j.compbiomed.2024.108006
摘要

AI-assisted polyp segmentation in colonoscopy plays a crucial role in enabling prompt diagnosis and treatment of colorectal cancer. However, the lack of sufficient annotated data poses a significant challenge for supervised learning approaches. Existing semi-supervised learning methods also suffer from performance degradation, mainly due to task-specific characteristics, such as class imbalance in polyp segmentation. The purpose of this work is to develop an effective semi-supervised learning framework for accurate polyp segmentation in colonoscopy, addressing limited annotated data and class imbalance challenges. We proposed PolypMixNet, a semi-supervised framework, for colorectal polyp segmentation, utilizing novel augmentation techniques and a Mean Teacher architecture to improve model performance. PolypMixNet introduces the polyp-aware mixup (PolypMix) algorithm and incorporates dual-level consistency regularization. PolypMix addresses the class imbalance in colonoscopy datasets and enhances the diversity of training data. By performing a polyp-aware mixup on unlabeled samples, it generates mixed images with polyp context along with their artificial labels. A polyp-directed soft pseudo-labeling (PDSPL) mechanism was proposed to generate high-quality pseudo labels and eliminate the dilution of lesion features caused by mixup operations. To ensure consistency in the training phase, we introduce the PolypMix prediction consistency (PMPC) loss and PolypMix attention consistency (PMAC) loss, enforcing consistency at both image and feature levels. Code is available at https://github.com/YChienHung/PolypMix. PolypMixNet was evaluated on four public colonoscopy datasets, achieving 88.97% Dice and 88.85% mIoU on the benchmark dataset of Kvasir-SEG. In scenarios where the labeled training data is limited to 15%, PolypMixNet outperforms the state-of-the-art semi-supervised approaches with a 2.88-point improvement in Dice. It also shows the ability to reach performance comparable to the fully supervised counterpart. Additionally, we conducted extensive ablation studies to validate the effectiveness of each module and highlight the superiority of our proposed approach. PolypMixNet effectively addresses the challenges posed by limited annotated data and unbalanced class distributions in polyp segmentation. By leveraging unlabeled data and incorporating novel augmentation and consistency regularization techniques, our method achieves state-of-the-art performance. We believe that the insights and contributions presented in this work will pave the way for further advancements in semi-supervised polyp segmentation and inspire future research in the medical imaging domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助水流众生采纳,获得10
刚刚
why完成签到,获得积分10
刚刚
章半仙完成签到,获得积分10
刚刚
wanci应助靓丽珩采纳,获得10
刚刚
bibi11完成签到,获得积分10
1秒前
1秒前
RLL发布了新的文献求助10
1秒前
memedaaaah完成签到,获得积分10
1秒前
lihn完成签到,获得积分10
1秒前
2秒前
2秒前
cwy完成签到 ,获得积分10
2秒前
222123完成签到,获得积分10
2秒前
茂飞发布了新的文献求助10
3秒前
嗝嗝完成签到,获得积分10
3秒前
可不可以完成签到 ,获得积分10
3秒前
dahuahau完成签到,获得积分10
3秒前
zzy发布了新的文献求助10
3秒前
ywynbgls发布了新的文献求助10
3秒前
封妖妖完成签到,获得积分10
3秒前
3秒前
苏曼青发布了新的文献求助10
4秒前
感性的道之完成签到 ,获得积分10
4秒前
mao305发布了新的文献求助10
4秒前
4秒前
弯颈小漏斗完成签到,获得积分20
4秒前
5秒前
浮游应助和平发展采纳,获得10
5秒前
5秒前
5秒前
张旭完成签到,获得积分10
5秒前
无花果应助上转换采纳,获得10
5秒前
ding应助向连虎采纳,获得10
5秒前
橙果果完成签到,获得积分10
5秒前
6秒前
milagu发布了新的文献求助10
6秒前
天天快乐应助欢呼的又夏采纳,获得10
6秒前
zhenxing完成签到,获得积分10
6秒前
电磁鳄发布了新的文献求助20
6秒前
斯文败类应助Barry采纳,获得30
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5433116
求助须知:如何正确求助?哪些是违规求助? 4545620
关于积分的说明 14197160
捐赠科研通 4465227
什么是DOI,文献DOI怎么找? 2447494
邀请新用户注册赠送积分活动 1438664
关于科研通互助平台的介绍 1415645