PolypMixNet: Enhancing semi-supervised polyp segmentation with polyp-aware augmentation

计算机科学 分割 人工智能 一致性(知识库) 机器学习 水准点(测量) 结肠镜检查 模式识别(心理学) 结直肠癌 医学 癌症 大地测量学 内科学 地理
作者
Xiao Jia,Yutian Shen,Yang Jian-hong,Ran Song,Wei Zhang,Max Q.‐H. Meng,Joseph C. Liao,Lei Xing
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:170: 108006-108006 被引量:2
标识
DOI:10.1016/j.compbiomed.2024.108006
摘要

AI-assisted polyp segmentation in colonoscopy plays a crucial role in enabling prompt diagnosis and treatment of colorectal cancer. However, the lack of sufficient annotated data poses a significant challenge for supervised learning approaches. Existing semi-supervised learning methods also suffer from performance degradation, mainly due to task-specific characteristics, such as class imbalance in polyp segmentation. The purpose of this work is to develop an effective semi-supervised learning framework for accurate polyp segmentation in colonoscopy, addressing limited annotated data and class imbalance challenges. We proposed PolypMixNet, a semi-supervised framework, for colorectal polyp segmentation, utilizing novel augmentation techniques and a Mean Teacher architecture to improve model performance. PolypMixNet introduces the polyp-aware mixup (PolypMix) algorithm and incorporates dual-level consistency regularization. PolypMix addresses the class imbalance in colonoscopy datasets and enhances the diversity of training data. By performing a polyp-aware mixup on unlabeled samples, it generates mixed images with polyp context along with their artificial labels. A polyp-directed soft pseudo-labeling (PDSPL) mechanism was proposed to generate high-quality pseudo labels and eliminate the dilution of lesion features caused by mixup operations. To ensure consistency in the training phase, we introduce the PolypMix prediction consistency (PMPC) loss and PolypMix attention consistency (PMAC) loss, enforcing consistency at both image and feature levels. Code is available at https://github.com/YChienHung/PolypMix. PolypMixNet was evaluated on four public colonoscopy datasets, achieving 88.97% Dice and 88.85% mIoU on the benchmark dataset of Kvasir-SEG. In scenarios where the labeled training data is limited to 15%, PolypMixNet outperforms the state-of-the-art semi-supervised approaches with a 2.88-point improvement in Dice. It also shows the ability to reach performance comparable to the fully supervised counterpart. Additionally, we conducted extensive ablation studies to validate the effectiveness of each module and highlight the superiority of our proposed approach. PolypMixNet effectively addresses the challenges posed by limited annotated data and unbalanced class distributions in polyp segmentation. By leveraging unlabeled data and incorporating novel augmentation and consistency regularization techniques, our method achieves state-of-the-art performance. We believe that the insights and contributions presented in this work will pave the way for further advancements in semi-supervised polyp segmentation and inspire future research in the medical imaging domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
jillian发布了新的文献求助10
2秒前
2秒前
qingxiao完成签到,获得积分10
3秒前
3秒前
完美世界应助媛羽厨采纳,获得10
4秒前
华仔应助tp040900采纳,获得10
4秒前
7秒前
Liufgui应助jillian采纳,获得10
7秒前
Zjx应助雪山飞龙采纳,获得10
7秒前
白紫寒完成签到,获得积分10
8秒前
Hello应助称心寒松采纳,获得10
9秒前
9秒前
两棵大白菜完成签到,获得积分10
9秒前
明亮灭绝发布了新的文献求助10
9秒前
11秒前
Amanda完成签到,获得积分10
11秒前
苏蔚完成签到,获得积分10
11秒前
jklwss发布了新的文献求助10
12秒前
13秒前
隐形曼青应助思维隋采纳,获得10
16秒前
明亮灭绝完成签到,获得积分10
17秒前
格瑞格完成签到,获得积分10
17秒前
称心寒松发布了新的文献求助10
18秒前
丘比特应助lulu采纳,获得10
18秒前
我是老大应助521采纳,获得10
19秒前
19秒前
朴素的幻然完成签到,获得积分10
21秒前
曾阿牛完成签到,获得积分10
22秒前
香蕉觅云应助李欣华采纳,获得10
23秒前
jklwss完成签到,获得积分10
23秒前
23秒前
25秒前
自然的霸完成签到,获得积分10
26秒前
务实皓轩发布了新的文献求助10
26秒前
26秒前
MYY完成签到,获得积分10
27秒前
27秒前
27秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992928
求助须知:如何正确求助?哪些是违规求助? 3533703
关于积分的说明 11263585
捐赠科研通 3273517
什么是DOI,文献DOI怎么找? 1806067
邀请新用户注册赠送积分活动 882931
科研通“疑难数据库(出版商)”最低求助积分说明 809629