亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

PolypMixNet: Enhancing semi-supervised polyp segmentation with polyp-aware augmentation

计算机科学 分割 人工智能 一致性(知识库) 机器学习 水准点(测量) 结肠镜检查 模式识别(心理学) 结直肠癌 医学 癌症 大地测量学 内科学 地理
作者
Xiao Jia,Yutian Shen,Yang Jian-hong,Ran Song,Wei Zhang,Max Q.‐H. Meng,Joseph C. Liao,Lei Xing
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:170: 108006-108006 被引量:2
标识
DOI:10.1016/j.compbiomed.2024.108006
摘要

AI-assisted polyp segmentation in colonoscopy plays a crucial role in enabling prompt diagnosis and treatment of colorectal cancer. However, the lack of sufficient annotated data poses a significant challenge for supervised learning approaches. Existing semi-supervised learning methods also suffer from performance degradation, mainly due to task-specific characteristics, such as class imbalance in polyp segmentation. The purpose of this work is to develop an effective semi-supervised learning framework for accurate polyp segmentation in colonoscopy, addressing limited annotated data and class imbalance challenges. We proposed PolypMixNet, a semi-supervised framework, for colorectal polyp segmentation, utilizing novel augmentation techniques and a Mean Teacher architecture to improve model performance. PolypMixNet introduces the polyp-aware mixup (PolypMix) algorithm and incorporates dual-level consistency regularization. PolypMix addresses the class imbalance in colonoscopy datasets and enhances the diversity of training data. By performing a polyp-aware mixup on unlabeled samples, it generates mixed images with polyp context along with their artificial labels. A polyp-directed soft pseudo-labeling (PDSPL) mechanism was proposed to generate high-quality pseudo labels and eliminate the dilution of lesion features caused by mixup operations. To ensure consistency in the training phase, we introduce the PolypMix prediction consistency (PMPC) loss and PolypMix attention consistency (PMAC) loss, enforcing consistency at both image and feature levels. Code is available at https://github.com/YChienHung/PolypMix. PolypMixNet was evaluated on four public colonoscopy datasets, achieving 88.97% Dice and 88.85% mIoU on the benchmark dataset of Kvasir-SEG. In scenarios where the labeled training data is limited to 15%, PolypMixNet outperforms the state-of-the-art semi-supervised approaches with a 2.88-point improvement in Dice. It also shows the ability to reach performance comparable to the fully supervised counterpart. Additionally, we conducted extensive ablation studies to validate the effectiveness of each module and highlight the superiority of our proposed approach. PolypMixNet effectively addresses the challenges posed by limited annotated data and unbalanced class distributions in polyp segmentation. By leveraging unlabeled data and incorporating novel augmentation and consistency regularization techniques, our method achieves state-of-the-art performance. We believe that the insights and contributions presented in this work will pave the way for further advancements in semi-supervised polyp segmentation and inspire future research in the medical imaging domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
20秒前
沉淀完成签到 ,获得积分10
21秒前
25秒前
amy完成签到,获得积分10
25秒前
科研通AI2S应助小小康康采纳,获得10
26秒前
31秒前
37秒前
vg完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
张张张完成签到 ,获得积分10
1分钟前
1分钟前
今晚睇paper完成签到,获得积分10
1分钟前
dental发布了新的文献求助10
1分钟前
serena0_0发布了新的文献求助10
1分钟前
一个薯片完成签到,获得积分10
1分钟前
jerry完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
搜集达人应助科研通管家采纳,获得10
2分钟前
2分钟前
小路完成签到,获得积分10
2分钟前
ccc发布了新的文献求助10
2分钟前
2分钟前
2分钟前
李健的粉丝团团长应助ccc采纳,获得10
2分钟前
spark810完成签到,获得积分0
2分钟前
spark810发布了新的文献求助10
2分钟前
佛fire完成签到,获得积分20
2分钟前
小二郎应助serena0_0采纳,获得10
2分钟前
劳健龙完成签到 ,获得积分10
2分钟前
zzyh307完成签到 ,获得积分0
2分钟前
CipherSage应助年轻的如冰采纳,获得10
3分钟前
3分钟前
佛fire发布了新的文献求助10
3分钟前
轻松觅柔发布了新的文献求助10
3分钟前
科研通AI2S应助年轻的如冰采纳,获得10
3分钟前
Buendia完成签到,获得积分10
3分钟前
大脸猫4811发布了新的文献求助20
3分钟前
小彬完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146703
求助须知:如何正确求助?哪些是违规求助? 2798009
关于积分的说明 7826443
捐赠科研通 2454508
什么是DOI,文献DOI怎么找? 1306317
科研通“疑难数据库(出版商)”最低求助积分说明 627692
版权声明 601522