Research on Capacity Configuration Optimization of Multi-Energy Complementary System Using Deep Reinforce Learning

计算机科学 数学优化 容量优化 马尔可夫决策过程 强化学习 最优化问题 理论(学习稳定性) 电力系统 功率(物理) 能量(信号处理) 高效能源利用 马尔可夫过程 工程类 人工智能 算法 数学 电气工程 物理 机器学习 统计 量子力学
作者
Zhuang Tang,Bo Chai,Jie Li,Yishen Wang,Siyan Liu,Xinghua Shi
标识
DOI:10.1109/icpes59999.2023.10400148
摘要

The output power of wind, solar, and hydro energy in a multi-energy complementary system (MECS) with the heating system exhibits certain fluctuations. Gas power generation and battery can reduce these problems. However, relying solely on the experience of designers to determine the capacity configuration is challenging, as it may compromise the system's safety and result in wasteful investments. To address these issues, the capacity configuration optimization problem of the MECS can be formulated as a multi-objective optimization problem. This paper proposes a MECS capacity optimization method based on deep reinforcement learning (DRL), specifically the deep deterministic strategy gradient (DDPG) algorithm. By transforming the multi-objective optimization problem into a Markov decision process, this approach effectively resolves it. The primary objective of the optimization is to ensure the stability of the system's power supply, while the secondary objective is to minimize the economic cost of the system. To evaluate the proposed method, simulations were conducted based on the characteristic curves of energy generation. The results demonstrate that utilizing the DDPG algorithm enables the rapid determination of the optimal capacity configuration for wind, solar, and battery. This approach improves the stability and economic efficiency of the multi-energy complementary system, while utilizing excess electrical energy for heating through heat pumps, greatly improving energy utilization efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助su采纳,获得10
刚刚
hhh发布了新的文献求助10
1秒前
2秒前
科研通AI5应助魏伯安采纳,获得10
3秒前
3秒前
神可馨完成签到 ,获得积分10
4秒前
Hangerli发布了新的文献求助20
4秒前
HealthyCH完成签到,获得积分10
4秒前
li完成签到,获得积分10
5秒前
6秒前
ononon发布了新的文献求助10
8秒前
8秒前
liu完成签到,获得积分10
10秒前
LWJ发布了新的文献求助10
11秒前
12秒前
大反应釜完成签到,获得积分10
12秒前
TT发布了新的文献求助10
15秒前
Jenny发布了新的文献求助10
17秒前
17秒前
完美凝竹发布了新的文献求助10
17秒前
我是站长才怪应助细腻沅采纳,获得10
18秒前
JG完成签到 ,获得积分10
18秒前
hhh完成签到,获得积分20
18秒前
科研通AI5应助想瘦的海豹采纳,获得10
19秒前
随性完成签到 ,获得积分10
19秒前
自由的信仰完成签到,获得积分10
20秒前
22秒前
23秒前
23秒前
夏夏发布了新的文献求助10
24秒前
打打应助Hangerli采纳,获得10
26秒前
完美凝竹完成签到,获得积分10
27秒前
zfzf0422发布了新的文献求助10
28秒前
蜘蛛道理完成签到 ,获得积分10
28秒前
冷傲迎梦发布了新的文献求助10
29秒前
852应助MEME采纳,获得10
29秒前
Godzilla发布了新的文献求助10
29秒前
大模型应助咕噜仔采纳,获得10
30秒前
蒋时晏应助pharmstudent采纳,获得30
30秒前
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824