Research on Capacity Configuration Optimization of Multi-Energy Complementary System Using Deep Reinforce Learning

计算机科学 数学优化 容量优化 马尔可夫决策过程 强化学习 最优化问题 理论(学习稳定性) 电力系统 功率(物理) 能量(信号处理) 高效能源利用 马尔可夫过程 工程类 人工智能 算法 数学 电气工程 物理 机器学习 统计 量子力学
作者
Zhuang Tang,Bo Chai,Jie Li,Yishen Wang,Siyan Liu,Xinghua Shi
标识
DOI:10.1109/icpes59999.2023.10400148
摘要

The output power of wind, solar, and hydro energy in a multi-energy complementary system (MECS) with the heating system exhibits certain fluctuations. Gas power generation and battery can reduce these problems. However, relying solely on the experience of designers to determine the capacity configuration is challenging, as it may compromise the system's safety and result in wasteful investments. To address these issues, the capacity configuration optimization problem of the MECS can be formulated as a multi-objective optimization problem. This paper proposes a MECS capacity optimization method based on deep reinforcement learning (DRL), specifically the deep deterministic strategy gradient (DDPG) algorithm. By transforming the multi-objective optimization problem into a Markov decision process, this approach effectively resolves it. The primary objective of the optimization is to ensure the stability of the system's power supply, while the secondary objective is to minimize the economic cost of the system. To evaluate the proposed method, simulations were conducted based on the characteristic curves of energy generation. The results demonstrate that utilizing the DDPG algorithm enables the rapid determination of the optimal capacity configuration for wind, solar, and battery. This approach improves the stability and economic efficiency of the multi-energy complementary system, while utilizing excess electrical energy for heating through heat pumps, greatly improving energy utilization efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助正直的西牛采纳,获得30
1秒前
111完成签到,获得积分10
1秒前
2秒前
2秒前
胖虎不胖完成签到,获得积分10
3秒前
3秒前
蓝桉完成签到,获得积分10
4秒前
4秒前
暮霭沉沉应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得50
4秒前
慕青应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
YY完成签到,获得积分20
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
渲染完成签到 ,获得积分10
5秒前
ding应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
5秒前
搜集达人应助科研通管家采纳,获得30
5秒前
5秒前
星星完成签到 ,获得积分10
6秒前
huan9955发布了新的文献求助10
8秒前
ding应助平成的怪物采纳,获得10
9秒前
酷炫的电源完成签到 ,获得积分10
10秒前
小钱钱完成签到,获得积分10
11秒前
qiqi完成签到,获得积分10
13秒前
爱吃蛋挞完成签到,获得积分10
13秒前
13秒前
鸣蜩十三完成签到,获得积分10
14秒前
韵胜完成签到,获得积分10
15秒前
16秒前
今后应助你还是要加油采纳,获得10
16秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162727
求助须知:如何正确求助?哪些是违规求助? 2813601
关于积分的说明 7901404
捐赠科研通 2473189
什么是DOI,文献DOI怎么找? 1316684
科研通“疑难数据库(出版商)”最低求助积分说明 631482
版权声明 602175