Research on Method of Collision Avoidance Planning for UUV Based on Deep Reinforcement Learning

避碰 无人水下航行器 避障 运动学 计算机科学 运动规划 障碍物 碰撞 强化学习 控制理论(社会学) 水下 机器人 算法 实时计算 人工智能 控制(管理) 移动机器人 经典力学 海洋学 物理 计算机安全 地质学 法学 政治学
作者
Wei Gao,Mengxue Han,Zhao Wang,Lihui Deng,Hongjian Wang,Jingfei Ren
出处
期刊:Journal of Marine Science and Engineering [MDPI AG]
卷期号:11 (12): 2245-2245 被引量:3
标识
DOI:10.3390/jmse11122245
摘要

A UUV can perform tasks such as underwater surveillance, reconnaissance, surveillance, and tracking by being equipped with sensors and different task modules. Due to the complex underwater environment, the UUV must have good collision avoidance planning algorithms to avoid various underwater obstacles when performing tasks. The existing path planning algorithms take a long time to plan and have poor adaptability to the environment. Some collision-avoidance planning algorithms do not take into account the kinematic limitations of the UUV, thus placing high demands on the performance and control algorithms of UUV. This article proposes a PPO−DWA collision avoidance planning algorithm for the UUV under static unknown obstacles, which is based on the proximal policy optimization (PPO) algorithm and the dynamic window approach (DWA). This algorithm acquires the obstacle information from forward-looking sonar as input and outputs the corresponding continuous actions. The PPO−DWA collision avoidance planning algorithm consists of the PPO algorithm and the modified DWA. The PPO collision avoidance planning algorithm is only responsible for outputting the continuous angular velocity, aiming to reduce the difficulty of training neural networks. The modified DWA acquires obstacle information and the optimal angular velocity from the PPO algorithm as input, and outputs of the linear velocity. The collision avoidance actions output by this algorithm meet the kinematic constraints of UUV, and the algorithm execution time is relatively short. The experimental data demonstrates that the PPO−DWA algorithm can effectively plan smooth collision-free paths in complex obstacle environments, and the execution time of the algorithm is acceptable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
潭深完成签到,获得积分10
刚刚
鲤鱼秋寒发布了新的文献求助10
刚刚
研友_VZG7GZ应助lym97采纳,获得10
1秒前
1秒前
科研通AI6应助Cyber_relic采纳,获得10
1秒前
呆萌笑晴完成签到,获得积分10
1秒前
2秒前
2秒前
Isabel完成签到 ,获得积分10
2秒前
2秒前
3秒前
3秒前
李爱国应助葡萄采纳,获得10
3秒前
3秒前
利奥发布了新的文献求助10
4秒前
maxsis完成签到,获得积分10
4秒前
zxwz关注了科研通微信公众号
4秒前
一点发布了新的文献求助10
4秒前
NexusExplorer应助。.。采纳,获得10
4秒前
双枪林黛玉完成签到,获得积分10
4秒前
4秒前
共享精神应助小烊采纳,获得10
4秒前
5秒前
完美的机器猫完成签到,获得积分20
5秒前
进击的PhD应助lele采纳,获得50
5秒前
研友_ZGDVz8完成签到,获得积分10
6秒前
6秒前
英姑应助遵义阿杜采纳,获得10
6秒前
aoc发布了新的文献求助10
6秒前
6秒前
mxs完成签到,获得积分10
6秒前
Orange应助书文混四方采纳,获得10
7秒前
科目三应助kkk采纳,获得10
7秒前
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647471
求助须知:如何正确求助?哪些是违规求助? 4773575
关于积分的说明 15039580
捐赠科研通 4806177
什么是DOI,文献DOI怎么找? 2570137
邀请新用户注册赠送积分活动 1527027
关于科研通互助平台的介绍 1486108