A Structured Graph Neural Network for Improving the Numerical Weather Prediction of Rainfall

数值天气预报 人工神经网络 计算机科学 预测技巧 气象学 特征(语言学) 机器学习 数据挖掘 人工智能 地理 语言学 哲学
作者
Xuan Peng,Qian Li,Lei Chen,Xiangyu Ning,Hai Chu,Jinqing Liu
出处
期刊:Journal Of Geophysical Research: Atmospheres [Wiley]
卷期号:128 (22) 被引量:1
标识
DOI:10.1029/2023jd039011
摘要

Abstract The current challenges of numerical weather prediction (NWP) of rainfall mainly stem from the complex and multiscale nature of rainfall. In recent years, as observation capability improved worldwide, there has been an increased feasibility to use data‐driven models to enhance forecasting performance with rainfall observation. Compared to traditional statistical and machine learning models, deep‐learning models show considerable promise in capturing the spatial‐temporal features of weather processes from multiple predictors, but the convolution‐based feature extractor is suboptimal due to the linear nature of convolution kernels. In this study, a multilevel forecasting model is proposed to forecast each rainfall level, in which each submodel adopts a graph neural network for feature extraction. Spatial and temporal propagation functions based on grid structure are designed to explicitly represent feature fusion and propagation of multiple predictors across multiple scales. On model training, a weight setting strategy that balances the impact of samples with different rainfall values on the total training loss is proposed, and a soft classification label is designed to convert observed rainfall into the probability of rainfall above each threshold. The proposed model was trained and validated on NWP data provided by European Center for Medium‐Range Weather Forecast, and results show significant improvement over the NWP in terms of threat score (TS) and Heidke Skill Score (HSS) scores. Analysis of the forecast results for two typical rainfall processes also illustrates that the proposed method can predict rainfall with more reasonable location and intensity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助风灵卫采纳,获得10
刚刚
sunday2024完成签到,获得积分10
刚刚
性感母蟑螂完成签到 ,获得积分10
刚刚
heyan完成签到,获得积分10
刚刚
Wy21完成签到,获得积分10
1秒前
勤劳傲安完成签到,获得积分20
1秒前
1秒前
2秒前
2秒前
刘运丽完成签到,获得积分10
2秒前
感动的煜城完成签到,获得积分10
2秒前
研友_LpQj3n发布了新的文献求助80
2秒前
2秒前
孙传彬完成签到,获得积分20
2秒前
啧啧啧完成签到,获得积分10
2秒前
胖鲤鱼完成签到,获得积分10
3秒前
shiwo110完成签到,获得积分10
3秒前
FashionBoy应助西瓜皮采纳,获得10
4秒前
汉堡包应助王聪颖采纳,获得10
4秒前
张张张完成签到,获得积分10
4秒前
largedream完成签到,获得积分10
4秒前
Wy21发布了新的文献求助10
4秒前
gmaster完成签到,获得积分10
4秒前
打打应助清秀颜演采纳,获得10
5秒前
嗨皮y完成签到 ,获得积分10
5秒前
5秒前
6秒前
无辜的姒发布了新的文献求助10
6秒前
Luckqi6688完成签到,获得积分10
6秒前
Psychexin完成签到,获得积分10
7秒前
7秒前
现代的黄豆完成签到,获得积分10
7秒前
largedream发布了新的文献求助10
7秒前
7秒前
渭水飞熊完成签到,获得积分10
8秒前
支傲菡完成签到,获得积分10
8秒前
8秒前
9秒前
科研yu完成签到,获得积分10
9秒前
10秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
Psychology for Teachers 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4598793
求助须知:如何正确求助?哪些是违规求助? 4009629
关于积分的说明 12412676
捐赠科研通 3689263
什么是DOI,文献DOI怎么找? 2033740
邀请新用户注册赠送积分活动 1066866
科研通“疑难数据库(出版商)”最低求助积分说明 951962