A Structured Graph Neural Network for Improving the Numerical Weather Prediction of Rainfall

数值天气预报 人工神经网络 计算机科学 预测技巧 气象学 特征(语言学) 机器学习 数据挖掘 人工智能 地理 语言学 哲学
作者
Xuan Peng,Qian Li,Lei Chen,Xiangyu Ning,Hai Chu,Jinqing Liu
出处
期刊:Journal Of Geophysical Research: Atmospheres [Wiley]
卷期号:128 (22) 被引量:1
标识
DOI:10.1029/2023jd039011
摘要

Abstract The current challenges of numerical weather prediction (NWP) of rainfall mainly stem from the complex and multiscale nature of rainfall. In recent years, as observation capability improved worldwide, there has been an increased feasibility to use data‐driven models to enhance forecasting performance with rainfall observation. Compared to traditional statistical and machine learning models, deep‐learning models show considerable promise in capturing the spatial‐temporal features of weather processes from multiple predictors, but the convolution‐based feature extractor is suboptimal due to the linear nature of convolution kernels. In this study, a multilevel forecasting model is proposed to forecast each rainfall level, in which each submodel adopts a graph neural network for feature extraction. Spatial and temporal propagation functions based on grid structure are designed to explicitly represent feature fusion and propagation of multiple predictors across multiple scales. On model training, a weight setting strategy that balances the impact of samples with different rainfall values on the total training loss is proposed, and a soft classification label is designed to convert observed rainfall into the probability of rainfall above each threshold. The proposed model was trained and validated on NWP data provided by European Center for Medium‐Range Weather Forecast, and results show significant improvement over the NWP in terms of threat score (TS) and Heidke Skill Score (HSS) scores. Analysis of the forecast results for two typical rainfall processes also illustrates that the proposed method can predict rainfall with more reasonable location and intensity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彩色语蝶应助科研通管家采纳,获得10
刚刚
大个应助科研通管家采纳,获得10
刚刚
田様应助科研通管家采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
任博文完成签到 ,获得积分10
3秒前
能干的山雁完成签到 ,获得积分10
3秒前
洋洋完成签到,获得积分10
4秒前
science完成签到,获得积分10
4秒前
邓代容完成签到 ,获得积分10
9秒前
dlut0407完成签到,获得积分10
11秒前
机灵的芷波完成签到 ,获得积分10
12秒前
夜雨诗意完成签到,获得积分10
15秒前
卷大喵完成签到,获得积分10
15秒前
Diaory2023完成签到 ,获得积分10
17秒前
Bin完成签到,获得积分10
17秒前
影像大侠完成签到,获得积分10
22秒前
25秒前
guishouyu完成签到,获得积分10
32秒前
jimmy_bytheway完成签到,获得积分10
33秒前
lululululululu完成签到 ,获得积分10
35秒前
35秒前
猪猪女孩完成签到,获得积分10
35秒前
36秒前
Beyond完成签到,获得积分10
37秒前
39秒前
清浅溪完成签到 ,获得积分10
40秒前
生动的海露完成签到,获得积分10
41秒前
无脚鸟完成签到,获得积分10
41秒前
快船总冠军完成签到 ,获得积分10
43秒前
余鹰发布了新的文献求助10
43秒前
44秒前
伊伊发布了新的文献求助10
47秒前
淡定的如风完成签到,获得积分10
49秒前
资山雁完成签到 ,获得积分10
50秒前
hellzhu完成签到,获得积分10
50秒前
511完成签到 ,获得积分10
52秒前
Hello应助淡定的如风采纳,获得10
53秒前
guo完成签到 ,获得积分10
53秒前
sdfdzhang完成签到 ,获得积分10
54秒前
59秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
RNAの科学 ―時代を拓く生体分子― 金井 昭夫(編) 1000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3353594
求助须知:如何正确求助?哪些是违规求助? 2978155
关于积分的说明 8684090
捐赠科研通 2659642
什么是DOI,文献DOI怎么找? 1456291
科研通“疑难数据库(出版商)”最低求助积分说明 674327
邀请新用户注册赠送积分活动 665070