A Structured Graph Neural Network for Improving the Numerical Weather Prediction of Rainfall

数值天气预报 人工神经网络 计算机科学 预测技巧 气象学 特征(语言学) 机器学习 数据挖掘 人工智能 地理 语言学 哲学
作者
Xuan Peng,Qian Li,Lei Chen,Xiangyu Ning,Hai Chu,Jinqing Liu
出处
期刊:Journal Of Geophysical Research: Atmospheres [Wiley]
卷期号:128 (22) 被引量:1
标识
DOI:10.1029/2023jd039011
摘要

Abstract The current challenges of numerical weather prediction (NWP) of rainfall mainly stem from the complex and multiscale nature of rainfall. In recent years, as observation capability improved worldwide, there has been an increased feasibility to use data‐driven models to enhance forecasting performance with rainfall observation. Compared to traditional statistical and machine learning models, deep‐learning models show considerable promise in capturing the spatial‐temporal features of weather processes from multiple predictors, but the convolution‐based feature extractor is suboptimal due to the linear nature of convolution kernels. In this study, a multilevel forecasting model is proposed to forecast each rainfall level, in which each submodel adopts a graph neural network for feature extraction. Spatial and temporal propagation functions based on grid structure are designed to explicitly represent feature fusion and propagation of multiple predictors across multiple scales. On model training, a weight setting strategy that balances the impact of samples with different rainfall values on the total training loss is proposed, and a soft classification label is designed to convert observed rainfall into the probability of rainfall above each threshold. The proposed model was trained and validated on NWP data provided by European Center for Medium‐Range Weather Forecast, and results show significant improvement over the NWP in terms of threat score (TS) and Heidke Skill Score (HSS) scores. Analysis of the forecast results for two typical rainfall processes also illustrates that the proposed method can predict rainfall with more reasonable location and intensity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
楼小柚完成签到,获得积分10
1秒前
zhangsir完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
3秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
Don完成签到 ,获得积分10
5秒前
初学者发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
maomao发布了新的文献求助10
7秒前
内向寒云发布了新的文献求助10
8秒前
9秒前
10秒前
diedeline完成签到 ,获得积分10
10秒前
10秒前
mmt发布了新的文献求助10
11秒前
百宝发布了新的文献求助10
11秒前
12秒前
WD发布了新的文献求助10
12秒前
14秒前
14秒前
脑洞疼应助邹长飞采纳,获得10
14秒前
科研通AI5应助xr采纳,获得10
15秒前
16秒前
18秒前
何处芳歇发布了新的文献求助10
19秒前
结实夜雪完成签到,获得积分10
19秒前
19秒前
20秒前
BANG发布了新的文献求助10
21秒前
SYLH应助单纯的文龙采纳,获得50
22秒前
CJ发布了新的文献求助20
22秒前
邹长飞完成签到,获得积分20
23秒前
桐桐应助WD采纳,获得10
23秒前
英姑应助游一采纳,获得10
23秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979779
求助须知:如何正确求助?哪些是违规求助? 3523794
关于积分的说明 11218782
捐赠科研通 3261278
什么是DOI,文献DOI怎么找? 1800526
邀请新用户注册赠送积分活动 879143
科研通“疑难数据库(出版商)”最低求助积分说明 807182