已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Structured Graph Neural Network for Improving the Numerical Weather Prediction of Rainfall

数值天气预报 人工神经网络 计算机科学 预测技巧 气象学 特征(语言学) 机器学习 数据挖掘 人工智能 地理 语言学 哲学
作者
Xuan Peng,Qian Li,Lei Chen,Xiangyu Ning,Hai Chu,Jinqing Liu
出处
期刊:Journal Of Geophysical Research: Atmospheres [Wiley]
卷期号:128 (22) 被引量:1
标识
DOI:10.1029/2023jd039011
摘要

Abstract The current challenges of numerical weather prediction (NWP) of rainfall mainly stem from the complex and multiscale nature of rainfall. In recent years, as observation capability improved worldwide, there has been an increased feasibility to use data‐driven models to enhance forecasting performance with rainfall observation. Compared to traditional statistical and machine learning models, deep‐learning models show considerable promise in capturing the spatial‐temporal features of weather processes from multiple predictors, but the convolution‐based feature extractor is suboptimal due to the linear nature of convolution kernels. In this study, a multilevel forecasting model is proposed to forecast each rainfall level, in which each submodel adopts a graph neural network for feature extraction. Spatial and temporal propagation functions based on grid structure are designed to explicitly represent feature fusion and propagation of multiple predictors across multiple scales. On model training, a weight setting strategy that balances the impact of samples with different rainfall values on the total training loss is proposed, and a soft classification label is designed to convert observed rainfall into the probability of rainfall above each threshold. The proposed model was trained and validated on NWP data provided by European Center for Medium‐Range Weather Forecast, and results show significant improvement over the NWP in terms of threat score (TS) and Heidke Skill Score (HSS) scores. Analysis of the forecast results for two typical rainfall processes also illustrates that the proposed method can predict rainfall with more reasonable location and intensity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
火焰迷踪发布了新的文献求助30
3秒前
4秒前
JamesPei应助付涵采纳,获得10
4秒前
5秒前
搜集达人应助onion采纳,获得10
5秒前
Maddy完成签到,获得积分10
6秒前
hhh完成签到,获得积分10
7秒前
远方发布了新的文献求助10
7秒前
润柏海完成签到 ,获得积分10
7秒前
7秒前
8秒前
马马完成签到 ,获得积分10
8秒前
酷炫的幻丝完成签到 ,获得积分10
9秒前
浮游应助han采纳,获得10
9秒前
9秒前
科研人完成签到,获得积分10
9秒前
沉住气发布了新的文献求助10
10秒前
可爱的函函应助时间尘埃采纳,获得10
11秒前
芷兰丁香发布了新的文献求助10
13秒前
Null发布了新的文献求助10
13秒前
万能图书馆应助油柑美式采纳,获得10
14秒前
吴巧发布了新的文献求助10
14秒前
15秒前
九bai完成签到 ,获得积分10
15秒前
上官若男应助漂亮夏兰采纳,获得10
15秒前
马马完成签到 ,获得积分10
15秒前
15秒前
16秒前
16秒前
Hello应助Zhao采纳,获得10
16秒前
邓邓完成签到 ,获得积分10
17秒前
浮游应助sunsuan采纳,获得10
18秒前
bkagyin应助sunsuan采纳,获得10
18秒前
19秒前
远山笑你完成签到 ,获得积分10
19秒前
陈谨发布了新的文献求助10
19秒前
onion发布了新的文献求助10
20秒前
林中逐梦发布了新的文献求助10
22秒前
高兴的南霜完成签到,获得积分20
22秒前
23秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502143
求助须知:如何正确求助?哪些是违规求助? 4598182
关于积分的说明 14462771
捐赠科研通 4531746
什么是DOI,文献DOI怎么找? 2483529
邀请新用户注册赠送积分活动 1466913
关于科研通互助平台的介绍 1439514