Early prediction of distant metastasis in patients with uterine cervical cancer treated with definitive chemoradiotherapy by deep learning using pretreatment [18F]fluorodeoxyglucose positron emission tomography/computed tomography

医学 宫颈癌 接收机工作特性 放化疗 正电子发射断层摄影术 放射科 氟脱氧葡萄糖 核医学 队列 癌症 放射治疗 内科学
作者
Kuo-Chen Wu,Shang-Wen Chen,Te‐Chun Hsieh,Kuo‐Yang Yen,Chao-Jen Chang,Yu‐Cheng Kuo,Ruey‐Feng Chang,Kao Chia-Hung
出处
期刊:Nuclear Medicine Communications [Ovid Technologies (Wolters Kluwer)]
卷期号:45 (3): 196-202
标识
DOI:10.1097/mnm.0000000000001799
摘要

A deep learning (DL) model using image data from pretreatment [ 18 F]fluorodeoxyglucose ([ 18 F] FDG)-PET or computed tomography (CT) augmented with a novel imaging augmentation approach was developed for the early prediction of distant metastases in patients with locally advanced uterine cervical cancer.This study used baseline [18F]FDG-PET/CT images of newly diagnosed uterine cervical cancer patients. Data from 186 to 25 patients were analyzed for training and validation cohort, respectively. All patients received chemoradiotherapy (CRT) and follow-up. PET and CT images were augmented by using three-dimensional techniques. The proposed model employed DL to predict distant metastases. Receiver operating characteristic (ROC) curve analysis was performed to measure the model's predictive performance.The area under the ROC curves of the training and validation cohorts were 0.818 and 0.830 for predicting distant metastasis, respectively. In the training cohort, the sensitivity, specificity, and accuracy were 80.0%, 78.0%, and 78.5%, whereas, the sensitivity, specificity, and accuracy for distant failure were 73.3%, 75.5%, and 75.2% in the validation cohort, respectively.Through the use of baseline [ 18 F]FDG-PET/CT images, the proposed DL model can predict the development of distant metastases for patients with locally advanced uterine cervical cancer treatment by CRT. External validation must be conducted to determine the model's predictive performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ezvsnoc完成签到,获得积分10
2秒前
3秒前
英俊的铭应助Sally采纳,获得10
5秒前
燕儿应助laohu采纳,获得10
5秒前
祁乾完成签到 ,获得积分10
6秒前
6秒前
koukousang完成签到,获得积分10
12秒前
13秒前
老肖应助cauliflower采纳,获得10
13秒前
星辰大海应助稳重向南采纳,获得10
14秒前
16秒前
飞快的语山完成签到,获得积分10
17秒前
搞科研的静静完成签到,获得积分10
17秒前
Fling完成签到,获得积分10
18秒前
18秒前
小蘑菇应助lx采纳,获得10
20秒前
霁昕完成签到 ,获得积分10
21秒前
adearfish完成签到 ,获得积分10
21秒前
22秒前
22秒前
Sally发布了新的文献求助10
22秒前
23秒前
稳重向南发布了新的文献求助10
26秒前
26秒前
111发布了新的文献求助10
29秒前
爱听歌忆翠应助Choi采纳,获得10
30秒前
科研通AI2S应助张宝采纳,获得10
33秒前
gnos应助ican采纳,获得10
34秒前
科研通AI2S应助小L采纳,获得10
35秒前
36秒前
大翟完成签到,获得积分10
37秒前
38秒前
38秒前
39秒前
39秒前
lllxiangbin完成签到,获得积分10
40秒前
小呆鹿发布了新的文献求助10
40秒前
40秒前
MIA发布了新的文献求助10
42秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164351
求助须知:如何正确求助?哪些是违规求助? 2815193
关于积分的说明 7908079
捐赠科研通 2474802
什么是DOI,文献DOI怎么找? 1317676
科研通“疑难数据库(出版商)”最低求助积分说明 631925
版权声明 602234