Early prediction of distant metastasis in patients with uterine cervical cancer treated with definitive chemoradiotherapy by deep learning using pretreatment [18F]fluorodeoxyglucose positron emission tomography/computed tomography

医学 宫颈癌 接收机工作特性 放化疗 正电子发射断层摄影术 放射科 氟脱氧葡萄糖 核医学 队列 癌症 放射治疗 内科学
作者
Kuo-Chen Wu,Shang-Wen Chen,Te‐Chun Hsieh,Kuo‐Yang Yen,Chao-Jen Chang,Yu‐Cheng Kuo,Ruey‐Feng Chang,Kao Chia-Hung
出处
期刊:Nuclear Medicine Communications [Ovid Technologies (Wolters Kluwer)]
卷期号:45 (3): 196-202
标识
DOI:10.1097/mnm.0000000000001799
摘要

A deep learning (DL) model using image data from pretreatment [ 18 F]fluorodeoxyglucose ([ 18 F] FDG)-PET or computed tomography (CT) augmented with a novel imaging augmentation approach was developed for the early prediction of distant metastases in patients with locally advanced uterine cervical cancer.This study used baseline [18F]FDG-PET/CT images of newly diagnosed uterine cervical cancer patients. Data from 186 to 25 patients were analyzed for training and validation cohort, respectively. All patients received chemoradiotherapy (CRT) and follow-up. PET and CT images were augmented by using three-dimensional techniques. The proposed model employed DL to predict distant metastases. Receiver operating characteristic (ROC) curve analysis was performed to measure the model's predictive performance.The area under the ROC curves of the training and validation cohorts were 0.818 and 0.830 for predicting distant metastasis, respectively. In the training cohort, the sensitivity, specificity, and accuracy were 80.0%, 78.0%, and 78.5%, whereas, the sensitivity, specificity, and accuracy for distant failure were 73.3%, 75.5%, and 75.2% in the validation cohort, respectively.Through the use of baseline [ 18 F]FDG-PET/CT images, the proposed DL model can predict the development of distant metastases for patients with locally advanced uterine cervical cancer treatment by CRT. External validation must be conducted to determine the model's predictive performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤奋弋完成签到,获得积分10
1秒前
无名欧文完成签到,获得积分10
2秒前
4秒前
虚心海燕发布了新的文献求助10
4秒前
黄啊涛关注了科研通微信公众号
4秒前
4秒前
JamesPei应助Rainbow采纳,获得10
5秒前
一只科研狗完成签到,获得积分10
5秒前
pp0118完成签到 ,获得积分10
5秒前
余呀余完成签到 ,获得积分10
6秒前
7秒前
善良易文关注了科研通微信公众号
7秒前
7秒前
瑶一瑶发布了新的文献求助10
8秒前
yhy完成签到,获得积分10
8秒前
纯真雁菱完成签到,获得积分10
8秒前
sun发布了新的文献求助10
8秒前
w.h完成签到,获得积分10
9秒前
9秒前
Schmoo发布了新的文献求助10
9秒前
赘婿应助Zxc采纳,获得10
9秒前
明理雨筠完成签到,获得积分10
10秒前
Ava应助Chen采纳,获得10
11秒前
11秒前
11秒前
Xing发布了新的文献求助10
11秒前
w.h发布了新的文献求助10
12秒前
搜集达人应助狼来了aas采纳,获得10
13秒前
14秒前
点点发布了新的文献求助10
14秒前
16秒前
16秒前
blingbling完成签到,获得积分10
16秒前
16秒前
黄啊涛发布了新的文献求助10
16秒前
16秒前
嘻嘻发布了新的文献求助30
16秒前
17秒前
17秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849