吸附
水溶液
壳聚糖
复合数
X射线光电子能谱
化学工程
化学
材料科学
核化学
物理化学
有机化学
复合材料
工程类
作者
Jing Li,Guo Lin,Zhen Zhong,Zeying Wang,Shixing Wang,Likang Fu,Tu Hu
标识
DOI:10.1016/j.ijbiomac.2023.129170
摘要
In this investigation, a composite material comprising Ti-MOF and chitosan, denoted as BD-MOF(Ti)@CS/Fe3O4, was successfully designed for the efficient adsorption of Pb(II) from aqueous solutions. A comprehensive array of characterization techniques, including SEM, XRD, BET, FT-IR, and XPS, were meticulously employed to scrutinize the structural attributes and morphological features of the Pb(II) adsorbent. Notably, the material exhibits adaptability to a broad pH range, with adsorption efficiency reaching 99 % between pH 3 and 6. Kinetic studies reveal that the adsorption process of Pb(II) by BD-MOF(Ti)@CS/Fe3O4 adheres closely to a pseudo-second-order kinetic model. Impressively, within a short duration of 40 min, the adsorption efficiency can reach 85 %. Furthermore, the adsorption isotherm aligns with the Hill isotherm model, signifying cooperative adsorption. This observation underscores the synergistic interplay among the functional groups on the surface of BD-MOF(Ti)@CS/Fe3O4 in capturing Pb(II). As per the Hill model, the theoretical maximum capacity was an impressive 944.9 mg/g. Thermodynamic assessments suggested that the adsorption process was spontaneous, entropy increasing and exothermic. Even in the presence of various interfering ions, BD-MOF(Ti)@CS/Fe3O4 exhibited robust adsorption performance, thereby affirming its utility in complex environments. Moreover, the material demonstrates noteworthy reusability, sustaining effective Pb(II) removal across five consecutive cycles in aqueous solutions.
科研通智能强力驱动
Strongly Powered by AbleSci AI