MSDSE: Predicting drug-side effects based on multi-scale features and deep multi-structure neural network

计算机科学 人工智能 机器学习 卷积神经网络 水准点(测量) 数据挖掘 大地测量学 地理
作者
Liyi Yu,Zhaochun Xu,Wang‐Ren Qiu,Xuan Xiao
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:169: 107812-107812 被引量:6
标识
DOI:10.1016/j.compbiomed.2023.107812
摘要

Unexpected side effects may accompany the research stage and post-marketing of drugs. These accidents lead to drug development failure and even endanger patients' health. Thus, it is essential to recognize the unknown drug-side effects. Most existing methods in silico find the answer from the association network or similarity network of drugs while ignoring the drug-intrinsic attributes. The limitation is that they can only handle drugs in the maturation stage. To be suitable for early drug-side effect screening, we conceive a multi-structural deep learning framework, MSDSE, which synthetically considers the multi-scale features derived from the drug. MSDSE can jointly learn SMILES sequence-based word embedding, substructure-based molecular fingerprint, and chemical structure-based graph embedding. In the preprocessing stage of MSDSE, we project all features to the abstract space with the same dimension. MSDSE builds a bi-level channel strategy, including a convolutional neural network module with an Inception structure and a multi-head Self-Attention module, to learn and integrate multi-modal features from local to global perspectives. Finally, MSDSE regards the prediction of drug-side effects as pair-wise learning and outputs the pair-wise probability of drug-side effects through the inner product operation. MSDSE is evaluated and analyzed on benchmark datasets and performs optimally compared to other baseline models. We also set up the ablation study to explain the rationality of the feature approach and model structure. Moreover, we select model partial prediction results for the case study to reveal actual capability. The original data are available at http://github.com/yuliyi/MSDSE.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美满一寡发布了新的文献求助30
1秒前
10秒前
14秒前
Sicie发布了新的文献求助20
14秒前
nczpf2010发布了新的文献求助10
15秒前
15秒前
俭朴书瑶完成签到,获得积分20
15秒前
朱忠华发布了新的文献求助10
17秒前
liuyu发布了新的文献求助10
18秒前
megumin发布了新的文献求助50
21秒前
21秒前
绝尘发布了新的文献求助10
25秒前
Dongsy完成签到,获得积分10
25秒前
29秒前
lgh完成签到,获得积分10
31秒前
郝富完成签到,获得积分10
33秒前
星辰大海应助科研通管家采纳,获得10
33秒前
iNk应助科研通管家采纳,获得20
33秒前
传奇3应助科研通管家采纳,获得10
33秒前
丘比特应助科研通管家采纳,获得10
33秒前
科研通AI5应助科研通管家采纳,获得10
33秒前
ding应助科研通管家采纳,获得10
33秒前
暖暖应助科研通管家采纳,获得10
33秒前
ding应助科研通管家采纳,获得10
33秒前
NexusExplorer应助科研通管家采纳,获得10
33秒前
深情安青应助科研通管家采纳,获得10
33秒前
33秒前
33秒前
34秒前
34秒前
充电宝应助绝尘采纳,获得10
35秒前
LL666完成签到 ,获得积分10
37秒前
39秒前
科研通AI5应助雨过天晴采纳,获得10
40秒前
40秒前
46秒前
ljy发布了新的文献求助10
47秒前
充电宝应助wd采纳,获得10
47秒前
朝文奕发布了新的文献求助10
52秒前
雨过天晴发布了新的文献求助10
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775761
求助须知:如何正确求助?哪些是违规求助? 3321365
关于积分的说明 10205232
捐赠科研通 3036395
什么是DOI,文献DOI怎么找? 1666090
邀请新用户注册赠送积分活动 797278
科研通“疑难数据库(出版商)”最低求助积分说明 757794