材料科学
压力传感器
信号(编程语言)
灵敏度(控制系统)
同步(交流)
职位(财务)
声学
计算机科学
电子工程
机械工程
工程类
电信
频道(广播)
物理
财务
经济
程序设计语言
作者
Xiancun Meng,Changchao Zhang,Haoran Xie,Shichao Niu,Zhiwu Han,Luquan Ren
标识
DOI:10.1002/adfm.202314479
摘要
Abstract A high‐performance flexible pressure sensor is one of the most important components of electronic skin, which can endow artificial devices with human‐like capabilities. However, the electronic skin usually relies on the arrays of sensors to simultaneously obtain both pressure magnitude and position, making the data processing time‐consuming, tedious, and error‐prone. Here, a novel continuous pressure positioning sensor (PPS) with flexible multilayer structures based on a combinatorial bionic strategy is designed and fabricated. This PPS is composed of the pressure sensing layer (PSL) and the pressure positioning layer (PPL). The PSL exhibits high sensitivity (18.87 kPa −1 ) owing to the bionic crack structures. Based on the connection/disconnection of the upper and lower conductive layers, this PPL exhibits excellent positioning properties with excellent resolution (≈35 µm). More importantly, due to stable signal change and synchronization of signals between the two functional layers (>21 pa), this PPS can recognize the type of signal. Applications of the PPS for pressure monitoring, tire safety monitoring, lunar rover road condition monitoring, and emotional communication in human–computer interaction are further demonstrated to measure magnitude, position, and recognition of pressure signals. So, it will have broad application prospects in fields such as pressure detection and human–computer interaction.
科研通智能强力驱动
Strongly Powered by AbleSci AI