Using HS-GC-MS and flash GC e-nose in combination with chemometric analysis and machine learning algorithms to identify the varieties, geographical origins and production modes of Atractylodes lancea

算法 气相色谱-质谱法 电子鼻 闪光灯(摄影) 生产(经济) 人工智能 计算机科学 模式识别(心理学) 机器学习 质谱法 化学 色谱法 物理 光学 宏观经济学 经济
作者
Yifu Gan,Tao Yang,Wei Gu,Lanping Guo,Rongli Qiu,Sheng Wang,Yan Zhang,Min Tang,Zengcai Yang
出处
期刊:Industrial Crops and Products [Elsevier]
卷期号:209: 117955-117955 被引量:7
标识
DOI:10.1016/j.indcrop.2023.117955
摘要

Atractylodes lancea (AL) is argued to be the best botanical source of the atractylodes rhizome (AR), which is used within traditional Chinese medicine. However, in recent years there have been a number of issues around the production and use of AR, including authenticity, confusion, and mislabeling between AL and Atractylodes chinensis (AC) isolates, geographical origins, and production modes. These discrepancies can impact both the quality and commercial value of the crop. In this study, volatile organic compounds from 173 batches of AR isolated from both AL and AC plants were compared using a flash gas chromatography electronic nose (flash GC e-nose) and headspace gas chromatography–mass spectrometry (HS-GC-MS). The flash GC e-nose revealed that the main aromas of AR were spicy, sweety, and fruity, and the flavor differences of Atractylodes lancea from different geographical origins are mainly reflected in sweetness and spicy taste. Furthermore, HS-GC-MS showed that terpenoids are key indicators for determining the quality and further clarifying the origin of AL. Eight terpenoids including 2-pinen-10-ol and β-elemene were higher in abundance in AL than AC; seven terpenoids including α-curcumene and α-pinene were higher in abundance in wild AL than cultivated AL; and there were significantly different quantities of ten terpenoids including agarospirol and β-bisabolene present in samples of AL taken from Jiangsu, Henan and Hubei provinces. Finally, the performance of eight machine-learning algorithms to distinguish between AL and AC, and recognize different regions and production patterns of AL, were compared. Among them, XGBoost had the highest differentiation accuracy of 86.17 ± 7.48%. This study provides a rapid and accurate strategy for addressing quality control and market regulation issues for AL and other industrial crops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
佰斯特威发布了新的文献求助30
刚刚
Dawn发布了新的文献求助10
刚刚
刚刚
认真的可冥完成签到,获得积分10
1秒前
1秒前
2秒前
silong发布了新的文献求助10
2秒前
HITvagary完成签到,获得积分10
2秒前
华仔应助欣喜访旋采纳,获得10
2秒前
2秒前
3秒前
良辰应助科研cc采纳,获得10
3秒前
NN应助西门晴采纳,获得10
3秒前
瘦瘦白昼发布了新的文献求助10
3秒前
1111应助科研小民工采纳,获得20
4秒前
逸风望完成签到,获得积分10
4秒前
4秒前
5秒前
慕青应助开朗的慕儿采纳,获得10
5秒前
5秒前
YAOYAO完成签到,获得积分0
5秒前
紫色系完成签到,获得积分10
5秒前
黄豆芽发布了新的文献求助10
6秒前
6秒前
Jin完成签到,获得积分10
7秒前
Akim应助外向如冬采纳,获得10
8秒前
8秒前
8秒前
浩浩大人完成签到,获得积分20
10秒前
10秒前
狂野的雅绿完成签到 ,获得积分10
10秒前
WMT完成签到 ,获得积分10
10秒前
正在输入中完成签到,获得积分10
10秒前
Lucas应助小小学术人采纳,获得10
11秒前
阳光刺眼完成签到 ,获得积分10
11秒前
Akim应助Promise采纳,获得10
11秒前
斯文败类应助小汪采纳,获得10
11秒前
11秒前
小宇发布了新的文献求助10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672