Using HS-GC-MS and flash GC e-nose in combination with chemometric analysis and machine learning algorithms to identify the varieties, geographical origins and production modes of Atractylodes lancea

算法 气相色谱-质谱法 电子鼻 闪光灯(摄影) 生产(经济) 人工智能 计算机科学 模式识别(心理学) 机器学习 质谱法 化学 色谱法 物理 光学 经济 宏观经济学
作者
Yifu Gan,Tao Yang,Wei Gu,Lanping Guo,Rongli Qiu,Sheng Wang,Yan Zhang,Min Tang,Zengcai Yang
出处
期刊:Industrial Crops and Products [Elsevier]
卷期号:209: 117955-117955 被引量:19
标识
DOI:10.1016/j.indcrop.2023.117955
摘要

Atractylodes lancea (AL) is argued to be the best botanical source of the atractylodes rhizome (AR), which is used within traditional Chinese medicine. However, in recent years there have been a number of issues around the production and use of AR, including authenticity, confusion, and mislabeling between AL and Atractylodes chinensis (AC) isolates, geographical origins, and production modes. These discrepancies can impact both the quality and commercial value of the crop. In this study, volatile organic compounds from 173 batches of AR isolated from both AL and AC plants were compared using a flash gas chromatography electronic nose (flash GC e-nose) and headspace gas chromatography–mass spectrometry (HS-GC-MS). The flash GC e-nose revealed that the main aromas of AR were spicy, sweety, and fruity, and the flavor differences of Atractylodes lancea from different geographical origins are mainly reflected in sweetness and spicy taste. Furthermore, HS-GC-MS showed that terpenoids are key indicators for determining the quality and further clarifying the origin of AL. Eight terpenoids including 2-pinen-10-ol and β-elemene were higher in abundance in AL than AC; seven terpenoids including α-curcumene and α-pinene were higher in abundance in wild AL than cultivated AL; and there were significantly different quantities of ten terpenoids including agarospirol and β-bisabolene present in samples of AL taken from Jiangsu, Henan and Hubei provinces. Finally, the performance of eight machine-learning algorithms to distinguish between AL and AC, and recognize different regions and production patterns of AL, were compared. Among them, XGBoost had the highest differentiation accuracy of 86.17 ± 7.48%. This study provides a rapid and accurate strategy for addressing quality control and market regulation issues for AL and other industrial crops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小白完成签到,获得积分10
1秒前
1秒前
yuyukeke发布了新的文献求助10
1秒前
Rivers发布了新的文献求助30
2秒前
Dimple完成签到,获得积分10
2秒前
学术骗子小刚完成签到,获得积分0
3秒前
动听梨愁发布了新的文献求助10
4秒前
4秒前
科研通AI2S应助陌上之心采纳,获得10
4秒前
科研通AI6应助绒裤病毒采纳,获得10
5秒前
5秒前
小屋完成签到,获得积分10
7秒前
赘婿应助虚幻百川采纳,获得10
7秒前
丽丽完成签到,获得积分20
8秒前
8秒前
所所应助慈祥的鑫采纳,获得10
8秒前
9秒前
dengdengdeng完成签到 ,获得积分10
9秒前
LKT发布了新的文献求助10
9秒前
清秀向雁发布了新的文献求助10
9秒前
9秒前
10秒前
12秒前
huhdcid发布了新的文献求助200
13秒前
hyscoll发布了新的文献求助10
13秒前
小马甲应助联润翔采纳,获得10
14秒前
LKT完成签到,获得积分10
14秒前
15秒前
syh发布了新的文献求助10
15秒前
万能图书馆应助yuyukeke采纳,获得10
15秒前
和光同尘完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
东郭一斩完成签到,获得积分10
17秒前
李健的小迷弟应助ydfqlzj采纳,获得20
18秒前
koui完成签到 ,获得积分10
19秒前
20秒前
21秒前
21秒前
Jimmy完成签到 ,获得积分10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5530913
求助须知:如何正确求助?哪些是违规求助? 4619898
关于积分的说明 14570675
捐赠科研通 4559413
什么是DOI,文献DOI怎么找? 2498391
邀请新用户注册赠送积分活动 1478380
关于科研通互助平台的介绍 1449913