Gesture Recognition Using MLP-Mixer With CNN and Stacking Ensemble for sEMG Signals

手势 计算机科学 语音识别 手势识别 堆积 模式识别(心理学) 人工智能 物理 核磁共振
作者
Shu Shen,Minglei Li,Fan Mao,Xinrong Chen,Ran Ran
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (4): 4960-4968 被引量:4
标识
DOI:10.1109/jsen.2023.3347529
摘要

In recent years, gesture perception has become crucial to human–computer interaction (HCI) technologies. Among various techniques, gesture recognition based on surface electromyography (sEMG) signals has gained significant prominence, with deep-learning methods playing a pivotal role in this domain. However, as the demand for accurate gesture recognition continues to rise, there is a growing inclination toward selecting complex deep neural network architectures. This trend, however, poses challenges in terms of performance and runtime requirements for computing devices. This article introduces a novel gesture recognition method utilizing the multilayer perceptron (MLP)-Mixer framework combined with Stacking ensemble learning to address these challenges. The proposed method effectively captures the features of sEMG data by employing simple MLPs, achieving a level of accuracy comparable to complex networks while simultaneously reducing inference time. Experimental results demonstrate that the method performs a classification accuracy of 80.03% and 81.13% for 49 actions in the open-source dataset NinaPro DB2, using window lengths of 200 and 300 ms, respectively. Furthermore, the method achieves a single inference speed of 54.77 ms with a window length of 200 ms. In NinaPro DB5, with window lengths of 250 and 300 ms, the method presented in this article achieves accuracy rates of 73.39% and 74.82%, respectively, completing inference in just 11.45 ms using the 300-ms window length. Notably, the technique also demonstrates its ability to mitigate the impact of individual differences in sEMG data on recognition accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落寞晓灵完成签到,获得积分10
刚刚
ORAzzz应助翠翠采纳,获得20
1秒前
zoe完成签到,获得积分10
1秒前
习习应助学术小白采纳,获得10
1秒前
2秒前
3秒前
tianny关注了科研通微信公众号
4秒前
4秒前
CO2发布了新的文献求助10
4秒前
桐桐应助zhangscience采纳,获得10
5秒前
求助发布了新的文献求助10
6秒前
buno应助zoe采纳,获得10
7秒前
junzilan发布了新的文献求助10
7秒前
7秒前
细品岁月完成签到 ,获得积分10
7秒前
细心书蕾完成签到 ,获得积分10
8秒前
无花果应助l11x29采纳,获得10
10秒前
10秒前
老詹头发布了新的文献求助10
10秒前
思源应助叫滚滚采纳,获得10
11秒前
12秒前
刘歌完成签到 ,获得积分10
12秒前
阿巡完成签到,获得积分10
12秒前
Chen完成签到,获得积分10
14秒前
LSH970829发布了新的文献求助10
14秒前
哈哈哈完成签到 ,获得积分10
15秒前
汤姆完成签到,获得积分10
15秒前
17秒前
17秒前
翠翠完成签到,获得积分10
18秒前
18秒前
LSH970829完成签到,获得积分10
19秒前
Lyg完成签到,获得积分20
20秒前
坚强的樱发布了新的文献求助10
20秒前
baodingning完成签到,获得积分10
21秒前
21秒前
公茂源发布了新的文献求助30
21秒前
热爱完成签到,获得积分10
22秒前
23秒前
叫滚滚发布了新的文献求助10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808