亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Gesture Recognition Using MLP-Mixer With CNN and Stacking Ensemble for sEMG Signals

手势 计算机科学 语音识别 手势识别 堆积 模式识别(心理学) 人工智能 物理 核磁共振
作者
Shu Shen,Minglei Li,Fan Mao,Xinrong Chen,Ran Ran
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (4): 4960-4968 被引量:4
标识
DOI:10.1109/jsen.2023.3347529
摘要

In recent years, gesture perception has become crucial to human–computer interaction (HCI) technologies. Among various techniques, gesture recognition based on surface electromyography (sEMG) signals has gained significant prominence, with deep-learning methods playing a pivotal role in this domain. However, as the demand for accurate gesture recognition continues to rise, there is a growing inclination toward selecting complex deep neural network architectures. This trend, however, poses challenges in terms of performance and runtime requirements for computing devices. This article introduces a novel gesture recognition method utilizing the multilayer perceptron (MLP)-Mixer framework combined with Stacking ensemble learning to address these challenges. The proposed method effectively captures the features of sEMG data by employing simple MLPs, achieving a level of accuracy comparable to complex networks while simultaneously reducing inference time. Experimental results demonstrate that the method performs a classification accuracy of 80.03% and 81.13% for 49 actions in the open-source dataset NinaPro DB2, using window lengths of 200 and 300 ms, respectively. Furthermore, the method achieves a single inference speed of 54.77 ms with a window length of 200 ms. In NinaPro DB5, with window lengths of 250 and 300 ms, the method presented in this article achieves accuracy rates of 73.39% and 74.82%, respectively, completing inference in just 11.45 ms using the 300-ms window length. Notably, the technique also demonstrates its ability to mitigate the impact of individual differences in sEMG data on recognition accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
抽象的脆脆完成签到,获得积分20
2秒前
科研通AI2S应助李月采纳,获得10
6秒前
CipherSage应助抽象的脆脆采纳,获得10
8秒前
20秒前
27秒前
37秒前
39秒前
大个应助欢喜怀绿采纳,获得10
40秒前
吴彦祖发布了新的文献求助10
43秒前
CryBill完成签到,获得积分10
57秒前
1分钟前
1分钟前
不打烊吗发布了新的文献求助10
1分钟前
zheng完成签到 ,获得积分10
1分钟前
小张完成签到 ,获得积分10
1分钟前
1分钟前
kinase完成签到 ,获得积分10
1分钟前
不打烊吗完成签到,获得积分20
1分钟前
13654135090发布了新的文献求助10
1分钟前
小二郎应助不打烊吗采纳,获得30
1分钟前
1分钟前
宝贝丫头完成签到 ,获得积分20
2分钟前
2分钟前
zbol完成签到,获得积分10
2分钟前
2分钟前
CipherSage应助zbol采纳,获得10
2分钟前
2分钟前
2分钟前
寻道图强应助科研通管家采纳,获得30
2分钟前
寻道图强应助科研通管家采纳,获得50
2分钟前
寻道图强应助科研通管家采纳,获得30
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
zbol发布了新的文献求助10
2分钟前
2分钟前
家家完成签到,获得积分10
2分钟前
2分钟前
家家发布了新的文献求助10
3分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234526
求助须知:如何正确求助?哪些是违规求助? 2880887
关于积分的说明 8217250
捐赠科研通 2548495
什么是DOI,文献DOI怎么找? 1377775
科研通“疑难数据库(出版商)”最低求助积分说明 647999
邀请新用户注册赠送积分活动 623314