Gesture Recognition Using MLP-Mixer With CNN and Stacking Ensemble for sEMG Signals

手势 计算机科学 语音识别 手势识别 堆积 模式识别(心理学) 人工智能 物理 核磁共振
作者
Shu Shen,Minglei Li,Fan Mao,Xinrong Chen,Ran Ran
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (4): 4960-4968 被引量:4
标识
DOI:10.1109/jsen.2023.3347529
摘要

In recent years, gesture perception has become crucial to human–computer interaction (HCI) technologies. Among various techniques, gesture recognition based on surface electromyography (sEMG) signals has gained significant prominence, with deep-learning methods playing a pivotal role in this domain. However, as the demand for accurate gesture recognition continues to rise, there is a growing inclination toward selecting complex deep neural network architectures. This trend, however, poses challenges in terms of performance and runtime requirements for computing devices. This article introduces a novel gesture recognition method utilizing the multilayer perceptron (MLP)-Mixer framework combined with Stacking ensemble learning to address these challenges. The proposed method effectively captures the features of sEMG data by employing simple MLPs, achieving a level of accuracy comparable to complex networks while simultaneously reducing inference time. Experimental results demonstrate that the method performs a classification accuracy of 80.03% and 81.13% for 49 actions in the open-source dataset NinaPro DB2, using window lengths of 200 and 300 ms, respectively. Furthermore, the method achieves a single inference speed of 54.77 ms with a window length of 200 ms. In NinaPro DB5, with window lengths of 250 and 300 ms, the method presented in this article achieves accuracy rates of 73.39% and 74.82%, respectively, completing inference in just 11.45 ms using the 300-ms window length. Notably, the technique also demonstrates its ability to mitigate the impact of individual differences in sEMG data on recognition accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助cheng采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
张张发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
大模型应助开朗的仰采纳,获得10
3秒前
顾矜应助mengyao采纳,获得10
3秒前
vita发布了新的文献求助10
3秒前
5秒前
陈宏博应助linda采纳,获得10
5秒前
ira发布了新的文献求助10
5秒前
5秒前
执着的冬瓜完成签到 ,获得积分10
5秒前
彩色发布了新的文献求助10
6秒前
6秒前
dimension完成签到,获得积分10
6秒前
今后应助张张采纳,获得10
6秒前
谦让的博发布了新的文献求助10
6秒前
迷路幼枫完成签到 ,获得积分10
7秒前
nzlatto完成签到 ,获得积分10
7秒前
bbbbhr发布了新的文献求助10
7秒前
7秒前
OriC发布了新的文献求助10
7秒前
重要的大有完成签到,获得积分10
7秒前
言屿完成签到,获得积分10
7秒前
苗浩阳发布了新的文献求助10
8秒前
www发布了新的文献求助10
8秒前
科研通AI6应助MA采纳,获得10
9秒前
01发布了新的文献求助10
9秒前
英姑应助k_1采纳,获得10
9秒前
深情安青应助努力的学采纳,获得10
9秒前
9秒前
monned发布了新的文献求助10
10秒前
上官老黑发布了新的文献求助10
10秒前
10秒前
滴滴答答发布了新的文献求助20
10秒前
white发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578302
求助须知:如何正确求助?哪些是违规求助? 4663150
关于积分的说明 14745051
捐赠科研通 4603900
什么是DOI,文献DOI怎么找? 2526774
邀请新用户注册赠送积分活动 1496369
关于科研通互助平台的介绍 1465712