已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Gesture Recognition Using MLP-Mixer With CNN and Stacking Ensemble for sEMG Signals

手势 计算机科学 语音识别 手势识别 堆积 模式识别(心理学) 人工智能 物理 核磁共振
作者
Shu Shen,Minglei Li,Fan Mao,Xinrong Chen,Ran Ran
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (4): 4960-4968 被引量:4
标识
DOI:10.1109/jsen.2023.3347529
摘要

In recent years, gesture perception has become crucial to human–computer interaction (HCI) technologies. Among various techniques, gesture recognition based on surface electromyography (sEMG) signals has gained significant prominence, with deep-learning methods playing a pivotal role in this domain. However, as the demand for accurate gesture recognition continues to rise, there is a growing inclination toward selecting complex deep neural network architectures. This trend, however, poses challenges in terms of performance and runtime requirements for computing devices. This article introduces a novel gesture recognition method utilizing the multilayer perceptron (MLP)-Mixer framework combined with Stacking ensemble learning to address these challenges. The proposed method effectively captures the features of sEMG data by employing simple MLPs, achieving a level of accuracy comparable to complex networks while simultaneously reducing inference time. Experimental results demonstrate that the method performs a classification accuracy of 80.03% and 81.13% for 49 actions in the open-source dataset NinaPro DB2, using window lengths of 200 and 300 ms, respectively. Furthermore, the method achieves a single inference speed of 54.77 ms with a window length of 200 ms. In NinaPro DB5, with window lengths of 250 and 300 ms, the method presented in this article achieves accuracy rates of 73.39% and 74.82%, respectively, completing inference in just 11.45 ms using the 300-ms window length. Notably, the technique also demonstrates its ability to mitigate the impact of individual differences in sEMG data on recognition accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
三岁半完成签到,获得积分10
2秒前
3秒前
3秒前
共享精神应助白叶采纳,获得10
4秒前
5秒前
5秒前
走走发布了新的文献求助10
6秒前
MyAI完成签到,获得积分10
6秒前
7秒前
8秒前
siyi完成签到,获得积分10
8秒前
yy发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
ttkx完成签到,获得积分10
10秒前
小番茄完成签到 ,获得积分10
10秒前
模糊老师完成签到,获得积分10
10秒前
熊啊发布了新的文献求助10
11秒前
liu发布了新的文献求助50
11秒前
龙韵完成签到 ,获得积分10
12秒前
李琼琼发布了新的文献求助10
13秒前
哇哇卡哇发布了新的文献求助30
14秒前
工大搬砖战神完成签到,获得积分10
14秒前
14秒前
CodeCraft应助卡卡罗特采纳,获得10
14秒前
17秒前
19秒前
无限的绿真完成签到,获得积分10
19秒前
鲸落Oo发布了新的文献求助10
21秒前
22秒前
关我屁事完成签到 ,获得积分10
22秒前
叮当完成签到 ,获得积分10
23秒前
23秒前
24秒前
24秒前
liu完成签到,获得积分10
25秒前
25秒前
小悦子完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252862
求助须知:如何正确求助?哪些是违规求助? 4416425
关于积分的说明 13749709
捐赠科研通 4288588
什么是DOI,文献DOI怎么找? 2352985
邀请新用户注册赠送积分活动 1349757
关于科研通互助平台的介绍 1309396