Transformer RGBT Tracking with Spatio-Temporal Multimodal Tokens

计算机科学 变压器 人工智能 水准点(测量) 模板 粒度 特征提取 模式识别(心理学) 计算机视觉 操作系统 物理 大地测量学 量子力学 电压 程序设计语言 地理
作者
Dengdi Sun,Yajie Pan,Andong Lu,Chenglong Li,Bin Luo
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2401.01674
摘要

Many RGBT tracking researches primarily focus on modal fusion design, while overlooking the effective handling of target appearance changes. While some approaches have introduced historical frames or fuse and replace initial templates to incorporate temporal information, they have the risk of disrupting the original target appearance and accumulating errors over time. To alleviate these limitations, we propose a novel Transformer RGBT tracking approach, which mixes spatio-temporal multimodal tokens from the static multimodal templates and multimodal search regions in Transformer to handle target appearance changes, for robust RGBT tracking. We introduce independent dynamic template tokens to interact with the search region, embedding temporal information to address appearance changes, while also retaining the involvement of the initial static template tokens in the joint feature extraction process to ensure the preservation of the original reliable target appearance information that prevent deviations from the target appearance caused by traditional temporal updates. We also use attention mechanisms to enhance the target features of multimodal template tokens by incorporating supplementary modal cues, and make the multimodal search region tokens interact with multimodal dynamic template tokens via attention mechanisms, which facilitates the conveyance of multimodal-enhanced target change information. Our module is inserted into the transformer backbone network and inherits joint feature extraction, search-template matching, and cross-modal interaction. Extensive experiments on three RGBT benchmark datasets show that the proposed approach maintains competitive performance compared to other state-of-the-art tracking algorithms while running at 39.1 FPS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
曹牧之完成签到 ,获得积分10
1秒前
烟花应助内向妙梦采纳,获得10
2秒前
peng完成签到,获得积分10
3秒前
4秒前
科研通AI6应助无私追命采纳,获得10
4秒前
5秒前
怡然的怜烟举报qweqdsa求助涉嫌违规
5秒前
5秒前
JamesPei应助加百莉采纳,获得10
5秒前
ji完成签到,获得积分10
6秒前
6秒前
脑洞疼应助K先生采纳,获得10
6秒前
逍遥完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
8秒前
岛屿发布了新的文献求助10
8秒前
8秒前
一筐猪发布了新的文献求助50
8秒前
星九完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
百招发布了新的文献求助20
10秒前
10秒前
Rainy发布了新的文献求助10
10秒前
wyling完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
petrichor完成签到,获得积分10
12秒前
执着艳发布了新的文献求助10
13秒前
叮叮叮铛完成签到,获得积分10
13秒前
喔喔完成签到,获得积分10
13秒前
13秒前
科研小白发布了新的文献求助10
13秒前
zys发布了新的文献求助10
14秒前
14秒前
好困发布了新的文献求助10
15秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442517
求助须知:如何正确求助?哪些是违规求助? 4552741
关于积分的说明 14238372
捐赠科研通 4474018
什么是DOI,文献DOI怎么找? 2451837
邀请新用户注册赠送积分活动 1442715
关于科研通互助平台的介绍 1418593