The intelligent prediction of membrane fouling during membrane filtration by mathematical models and artificial intelligence models

膜污染 结垢 膜技术 工艺工程 过滤(数学) 数学模型 过程(计算) 计算机科学 生化工程 人工智能 工程类 化学 数学 生物化学 统计 操作系统
作者
Lu Wang,Zonghao Li,Jianhua Fan,Zhiwu Han
出处
期刊:Chemosphere [Elsevier BV]
卷期号:349: 141031-141031 被引量:9
标识
DOI:10.1016/j.chemosphere.2023.141031
摘要

Recently, membrane separation technology has been widely utilized in filtration process intensification due to its efficient performance and unique advantages, but membrane fouling limits its development and application. Therefore, the research on membrane fouling prediction and control technology is crucial to effectively reduce membrane fouling and improve separation performance. This review first introduces the main factors (operating condition, material characteristics, and membrane structure properties) and the corresponding principles that affect membrane fouling. In addition, mathematical models (Hermia model and Tandem resistance model), artificial intelligence (AI) models (Artificial neural networks model and fuzzy control model), and AI optimization methods (genetic algorithm and particle swarm algorithm), which are widely used for the prediction of membrane fouling, are summarized and analyzed for comparison. The AI models are usually significantly better than the mathematical models in terms of prediction accuracy and applicability of membrane fouling and can monitor membrane fouling in real-time by working in concert with image processing technology, which is crucial for membrane fouling prediction and mechanism studies. Meanwhile, AI models for membrane fouling prediction in the separation process have shown good potential and are expected to be further applied in large-scale industrial applications for separation and filtration process intensification. This review will help researchers understand the challenges and future research directions in membrane fouling prediction, which is expected to provide an effective method to reduce or even solve the bottleneck problem of membrane fouling, and to promote the further application of AI modeling in environmental and food fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐的睫毛完成签到 ,获得积分10
刚刚
池鱼完成签到,获得积分10
2秒前
orixero应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得50
3秒前
坦率白萱应助科研通管家采纳,获得10
3秒前
3秒前
HarryChan应助科研通管家采纳,获得20
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
CR7应助科研通管家采纳,获得20
4秒前
齐天大圣应助科研通管家采纳,获得10
4秒前
坦率白萱应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
坦率白萱应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
4秒前
5秒前
yar应助科研通管家采纳,获得10
5秒前
可爱的函函应助WX采纳,获得10
5秒前
L同学完成签到,获得积分20
6秒前
帅气的璎发布了新的文献求助10
6秒前
微笑的天抒完成签到,获得积分10
8秒前
继往开来完成签到,获得积分10
8秒前
10秒前
10秒前
young完成签到,获得积分10
10秒前
12秒前
54完成签到,获得积分10
13秒前
13秒前
Zack发布了新的文献求助10
14秒前
15秒前
16秒前
小张z发布了新的文献求助10
17秒前
高高的鹤完成签到,获得积分20
19秒前
oh应助帅气的璎采纳,获得10
19秒前
WX发布了新的文献求助10
20秒前
搜大有发布了新的文献求助30
21秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999460
求助须知:如何正确求助?哪些是违规求助? 3538836
关于积分的说明 11275255
捐赠科研通 3277713
什么是DOI,文献DOI怎么找? 1807651
邀请新用户注册赠送积分活动 883983
科研通“疑难数据库(出版商)”最低求助积分说明 810111