GFAnno: Integrated Method for Plant Flavonoid Biosynthesis Pathway Gene Annotation

注释 基因 生物 计算生物学 基因组 选择(遗传算法) 遗传学 计算机科学 机器学习
作者
Lei Du,Cui Lu,Zhentao Wang,Lee Zou,Yan Xiong,Qun‐Jie Zhang
出处
期刊:Beverage plant research [Maximum Academic Press]
卷期号:: 1-10
标识
DOI:10.48130/bpr-0023-0041
摘要

Flavonoids are important secondary metabolites synthesized by the tea plant. However, inconsistencies in the variations in gene annotation methods across numerous studies, have hindered the comparisons of results from previous studies. In this work, we offer 'GFAnno', an open-source software package annotates genes and gene families based on sequence features, along with annotated parameters for 18 key genes related to the flavonoid biosynthesis pathway. The package takes a protein sequence file as input, performs gene annotation based on the identity and coverage of pre-prepared known seed protein sequences and the coverage of conserved Hidden Markov Model (HMM) domain. We used 11 dicotyledon, 7 monocotyledon, and 2 basal angiosperm genomes to construct three datasets. We then use the seed species collection to construct seed sequences, use the test species collection to follow strict parameter selection rules, and use the validation species collection to verify the accuracy of the analysis results. The annotation results of validation collection using the filtering parameters by test collection shows that, our parameter selection can effectively exclude various structurally incomplete and abnormal proteins, while correctly distinguishing genes with high sequence similarity, such as Flavonoid 3'-Hydroxylase (F3'H) and Flavonoid 3'5'-Hydroxylase (F3'5'H) in the cytochrome P450 (CYP450). Our work aids ongoing tea plant pan-genome research by offering a convenient software for target gene annotation and sets comparative standards for analyzing the flavonoid biosynthesis pathway and conducting sequence comparison of catalytic enzymes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
洪亮完成签到,获得积分0
刚刚
1秒前
drfy123发布了新的文献求助10
1秒前
研友_VZG7GZ应助独特的苗条采纳,获得10
2秒前
2秒前
Little2发布了新的文献求助10
3秒前
盛夏之末应助太阳吖采纳,获得10
3秒前
星辰大海应助mrmrer采纳,获得10
3秒前
hhh完成签到,获得积分20
4秒前
逸鑫林完成签到 ,获得积分10
5秒前
大模型应助mirayq采纳,获得10
5秒前
5秒前
Ava应助21采纳,获得10
6秒前
6秒前
执着谷兰发布了新的文献求助30
6秒前
苻慕梅完成签到,获得积分10
7秒前
可爱的函函应助drfy123采纳,获得10
8秒前
leopardymk发布了新的文献求助10
8秒前
大气沧海发布了新的文献求助10
8秒前
Zhang完成签到,获得积分10
8秒前
8秒前
zhangpeipei完成签到,获得积分10
9秒前
shirly完成签到,获得积分10
9秒前
Cherish发布了新的文献求助10
9秒前
9秒前
10秒前
12秒前
小全完成签到,获得积分10
12秒前
断水流小师弟完成签到,获得积分10
12秒前
12秒前
蓝一笔关注了科研通微信公众号
13秒前
13秒前
噜噜完成签到,获得积分10
13秒前
Ava应助周周采纳,获得10
14秒前
YU完成签到,获得积分10
14秒前
14秒前
15秒前
16秒前
噜噜发布了新的文献求助10
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961269
求助须知:如何正确求助?哪些是违规求助? 3507536
关于积分的说明 11136688
捐赠科研通 3239991
什么是DOI,文献DOI怎么找? 1790625
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803199