GFAnno: Integrated Method for Plant Flavonoid Biosynthesis Pathway Gene Annotation

注释 基因 生物 计算生物学 基因组 选择(遗传算法) 遗传学 计算机科学 机器学习
作者
Lei Du,Cui Lu,Zhentao Wang,Lee Zou,Yan Xiong,Qun‐Jie Zhang
出处
期刊:Beverage plant research [Maximum Academic Press]
卷期号:: 1-10
标识
DOI:10.48130/bpr-0023-0041
摘要

Flavonoids are important secondary metabolites synthesized by the tea plant. However, inconsistencies in the variations in gene annotation methods across numerous studies, have hindered the comparisons of results from previous studies. In this work, we offer 'GFAnno', an open-source software package annotates genes and gene families based on sequence features, along with annotated parameters for 18 key genes related to the flavonoid biosynthesis pathway. The package takes a protein sequence file as input, performs gene annotation based on the identity and coverage of pre-prepared known seed protein sequences and the coverage of conserved Hidden Markov Model (HMM) domain. We used 11 dicotyledon, 7 monocotyledon, and 2 basal angiosperm genomes to construct three datasets. We then use the seed species collection to construct seed sequences, use the test species collection to follow strict parameter selection rules, and use the validation species collection to verify the accuracy of the analysis results. The annotation results of validation collection using the filtering parameters by test collection shows that, our parameter selection can effectively exclude various structurally incomplete and abnormal proteins, while correctly distinguishing genes with high sequence similarity, such as Flavonoid 3'-Hydroxylase (F3'H) and Flavonoid 3'5'-Hydroxylase (F3'5'H) in the cytochrome P450 (CYP450). Our work aids ongoing tea plant pan-genome research by offering a convenient software for target gene annotation and sets comparative standards for analyzing the flavonoid biosynthesis pathway and conducting sequence comparison of catalytic enzymes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
芝士发布了新的文献求助10
1秒前
橘子发布了新的文献求助10
2秒前
2秒前
2秒前
晨曦发布了新的文献求助10
3秒前
3秒前
kobiy完成签到 ,获得积分10
3秒前
wu完成签到 ,获得积分10
4秒前
蛋泥完成签到,获得积分10
4秒前
顾矜应助mingjie采纳,获得10
5秒前
zhaowenxian发布了新的文献求助10
5秒前
勤劳傲晴发布了新的文献求助10
6秒前
6秒前
橘子完成签到,获得积分10
8秒前
可耐的从安完成签到 ,获得积分10
9秒前
zho应助背后的诺言采纳,获得10
9秒前
粥粥完成签到,获得积分10
9秒前
10秒前
打打应助陈杰采纳,获得10
11秒前
充电宝应助柔弱凡松采纳,获得10
12秒前
Jasmine发布了新的文献求助10
13秒前
14秒前
14秒前
大气的秋完成签到,获得积分10
15秒前
桐桐应助BB采纳,获得10
15秒前
15秒前
15秒前
曙光完成签到,获得积分10
16秒前
16秒前
大方嵩发布了新的文献求助10
17秒前
陌路发布了新的文献求助20
17秒前
Muqi完成签到,获得积分10
17秒前
18秒前
marinemiao发布了新的文献求助10
19秒前
19秒前
丘比特应助wzxxxx采纳,获得10
20秒前
科研通AI5应助飘逸蘑菇采纳,获得10
20秒前
科研通AI2S应助cc采纳,获得10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794