Advancements in machine learning techniques for coal and gas outburst prediction in underground mines

采矿工程 地质学 煤矿开采 石油工程 工程类 废物管理
作者
Angelina Anani,Sefiu O. Adewuyi,Nathalie Risso,Wedam Nyaaba
出处
期刊:International Journal of Coal Geology [Elsevier]
卷期号:285: 104471-104471 被引量:3
标识
DOI:10.1016/j.coal.2024.104471
摘要

Coal and gas outbursts are a major cause of fatalities in underground coal mines and pose a threat to coal power generation worldwide. Among the current mitigation efforts include monitoring methane gas levels using sensors, employing geophysical surveys to identify geological structures and zones prone to outbursts, and using empirical modeling for outburst predictions. However, in the wake of industry 4.0 technologies, several studies have been conducted on applying artificial intelligence methods to predict outbursts. The proposed models and their results vary significantly in the literature. This study reviews the application of machine learning (ML) to predict coal and gas outbursts in underground mines using a mixed-method approach. Most of the available literature, with a focus on ML applications in coal and gas outburst prediction, was investigated in China. Findings indicate that researchers proposed diverse ML models mostly combined with different optimization algorithms, including particle swarm optimization (PSO), genetic algorithm (GA), rough set (RS), and fruit fly optimization algorithm (IFOA) for outburst prediction. The number and type of input parameters used for prediction differed significantly, with initial gas velocity being the most dominant parameter for gas outbursts, and coal seam depth as the dominant parameter for coal outbursts. The datasets for training and testing the proposed ML models in the literature varied significantly but were mostly insufficient - which questions the reliability of some of the applied ML models. Future research should investigate the effect of data size and input parameters on coal and gas outburst prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Y哦莫哦莫发布了新的文献求助20
1秒前
所所应助crystal采纳,获得10
4秒前
4秒前
fdd博发布了新的文献求助30
5秒前
一一完成签到,获得积分10
6秒前
武原龙发布了新的文献求助10
8秒前
锦李完成签到,获得积分10
8秒前
8秒前
茶色啊发布了新的文献求助10
8秒前
9秒前
Lucas应助jssssssss采纳,获得10
9秒前
10秒前
13秒前
科研通AI2S应助孤独丹秋采纳,获得10
14秒前
炽岈发布了新的文献求助10
16秒前
17秒前
科研小白发布了新的文献求助10
18秒前
19秒前
重要的清完成签到,获得积分10
21秒前
21秒前
Yara.H发布了新的文献求助10
22秒前
宇月幸成发布了新的文献求助10
27秒前
29秒前
难过的花生完成签到,获得积分10
30秒前
Y哦莫哦莫完成签到,获得积分10
30秒前
乐观忆灵应助奋斗的幼荷采纳,获得20
31秒前
31秒前
合适靖儿发布了新的文献求助10
32秒前
追寻紫安应助科研通管家采纳,获得10
35秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
传奇3应助科研通管家采纳,获得10
36秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
sissiarno应助科研通管家采纳,获得30
36秒前
慕青应助科研通管家采纳,获得10
36秒前
共享精神应助科研通管家采纳,获得10
36秒前
梦之凌云应助科研通管家采纳,获得30
36秒前
爆米花应助科研通管家采纳,获得10
37秒前
HMONEY应助科研通管家采纳,获得10
37秒前
行僧完成签到,获得积分10
37秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055393
求助须知:如何正确求助?哪些是违规求助? 2712170
关于积分的说明 7430007
捐赠科研通 2356998
什么是DOI,文献DOI怎么找? 1248385
科研通“疑难数据库(出版商)”最低求助积分说明 606700
版权声明 596093