A moisture-absorbing cellulose nanofibril-based foam via ambient drying for high-performance dehumidification

纤维素 水分 材料科学 干燥剂 吸附 多孔性 湿度 化学工程 体积热力学 复合材料 分子筛 吸附 化学 有机化学 工程类 物理 量子力学 热力学
作者
Zi Wang,Yingying He,Chunyu Wang,Yong Ye,Wei Yuan,Hongfu Bi,Pengyu Wang,Gang Chen
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:486: 150063-150063 被引量:8
标识
DOI:10.1016/j.cej.2024.150063
摘要

Hygroscopic salt is often used as an important functional component of moisture-absorbing materials because of its excellent capability of capturing water from the air. However, hygroscopic salt cannot store large amounts of condensed water and has poor structural stability, as it dissolves easily in the condensate. The droplets leak from porous composites, resulting in hygroscopic salt consumption and poor water uptake. Herein, we aimed to develop a porous moisture-absorbing foam, which consists of a hydrophilic cellulose nanofibril (CNF)/4A molecular sieve network functionalized by hygroscopic lithium chloride (LiCl), using an ambient drying method. The hygroscopic LiCl considerably enhanced the moisture absorption of the porous foam, while strong hydrophilic CNFs captured the adjacent water molecules via hydrogen bonding and transported the condensed water to the inner part of the foam. The synergistic effect of LiCl and the CNF/4A molecular sieve network was critical for the air dehumidification performance, conferring the foam with excellent water uptake ability of 0.74 g/g within 8 h at 50 % relative humidity (RH). The liquefied water was confined completely in the porous foam during the moisture sorption process, thereby achieving good cyclic stability (10 cycles). Even when the volume was equivalent to 120 × of the volume of one foam, the RH was reduced by the foam from 55 to 58 % to 28–31 % (within 23 min) and then maintained stably up to 8 h. The foam possessed better dehumidification ability than desiccant wheel and silica gel, indicating that it may be used for air dehumidification and environmental humidity management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助AoAoo采纳,获得10
刚刚
刘梅完成签到 ,获得积分10
刚刚
情怀应助IJT采纳,获得10
1秒前
Earnestlee完成签到,获得积分10
2秒前
2秒前
木头人应助hm777采纳,获得10
2秒前
coconut完成签到,获得积分10
3秒前
淡淡碧玉发布了新的文献求助10
3秒前
3秒前
hyue完成签到 ,获得积分20
4秒前
SciGPT应助zyj采纳,获得10
4秒前
4秒前
萧水白应助rh1006采纳,获得10
5秒前
现代的访曼应助橘子采纳,获得20
5秒前
烟花应助黄院士采纳,获得10
6秒前
努力的学发布了新的文献求助10
7秒前
哇哇哇哇我应助4356采纳,获得20
8秒前
peng发布了新的文献求助10
8秒前
10秒前
siriuslee99完成签到,获得积分10
12秒前
13秒前
情怀应助纪梵希采纳,获得10
13秒前
xkn关注了科研通微信公众号
14秒前
15秒前
17秒前
proton完成签到,获得积分20
20秒前
Regina完成签到,获得积分10
20秒前
20秒前
21秒前
22秒前
proton发布了新的文献求助30
23秒前
今后应助janan33采纳,获得200
24秒前
汴汴发布了新的文献求助10
24秒前
xiaoyu完成签到,获得积分10
24秒前
Regina发布了新的文献求助20
25秒前
YQ57完成签到,获得积分10
25秒前
我是老大应助你好可爱采纳,获得10
25秒前
26秒前
王青青完成签到,获得积分10
26秒前
天天快乐应助乐哉采纳,获得10
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954537
求助须知:如何正确求助?哪些是违规求助? 3500689
关于积分的说明 11100600
捐赠科研通 3231199
什么是DOI,文献DOI怎么找? 1786319
邀请新用户注册赠送积分活动 869946
科研通“疑难数据库(出版商)”最低求助积分说明 801731