Hybrid modeling with finite element—analysis—neural network for predicting residual stress in orthogonal cutting of H13

材料科学 残余应力 有限元法 人工神经网络 机械加工 压力(语言学) 表面完整性 残余物 复合材料 结构工程 冶金 算法 计算机科学 工程类 机器学习 语言学 哲学
作者
Tao Zhou,Tian Zhou,Cheng Zhang,Cong Sun,Hao Cui,Pengfei Tian,Feilong Du,Lin He
出处
期刊:Journal of materials research and technology [Elsevier BV]
卷期号:29: 4954-4977 被引量:3
标识
DOI:10.1016/j.jmrt.2024.02.126
摘要

Residual stress is an important surface integrity index to evaluate the crack initiation and failure of die surface. The efficient prediction of cutting residual stress can guide the high-quality machining of die and improve its service life. The existing cutting residual stress prediction models are complex, time-consuming and inefficient. In this paper, a hybrid prediction method of cutting residual stress based on finite element-analytical-neural network is proposed. Firstly, the stress, strain and temperature of the cutting surface are obtained based on the orthogonal cutting finite element model. Then, the stress relaxation analytical algorithm considering the elastic-plastic state of the material is used to replace the stress release process of the finite element, and the residual stress distribution data were obtained based on the joint model of finite element and analytical algorithm. Secondly, the surrogate model of BP neural network (SSA-BP) is improved based on SSA algorithm to realize the rapid prediction of characteristic value of residual stress. The effectiveness of the finite element-analytical-neural network hybrid model was verified by the cutting residual stress test of H13 steel. Finally, the effects of tool structure parameters and cutting parameters on the residual stress distribution and the maximum compressive stress and maximum tensile stress of H13 steel were studied. This method can provide a flexible and efficient basic model for obtaining the optimal cutting conditions for controlling the residual stress of H13 steel and other metals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
bkagyin应助七堇采纳,获得10
2秒前
2秒前
塞西尔发布了新的文献求助10
2秒前
3秒前
Ava应助Lenacici采纳,获得10
3秒前
JW完成签到,获得积分10
3秒前
ll发布了新的文献求助10
3秒前
SHTS完成签到,获得积分10
5秒前
ting发布了新的文献求助10
5秒前
善学以致用应助小杜在此采纳,获得10
5秒前
oldblack发布了新的文献求助10
5秒前
郑方形发布了新的文献求助10
6秒前
6秒前
6秒前
北执完成签到,获得积分10
7秒前
荔枝多酚完成签到,获得积分10
7秒前
8秒前
Hello应助kk子采纳,获得10
9秒前
10秒前
10秒前
77完成签到,获得积分10
10秒前
zhangyu应助塞西尔采纳,获得10
11秒前
称心不尤发布了新的文献求助10
11秒前
YZzzJ发布了新的文献求助10
13秒前
不努力的研究生完成签到,获得积分20
13秒前
今后应助小路采纳,获得10
13秒前
14秒前
上官若男应助rainbow采纳,获得10
14秒前
15秒前
JggHoo完成签到 ,获得积分20
16秒前
孙福禄应助游一采纳,获得10
16秒前
烟花应助滕达采纳,获得10
16秒前
17秒前
Zjx发布了新的文献求助10
17秒前
YZzzJ完成签到,获得积分10
17秒前
18秒前
今后应助称心不尤采纳,获得10
19秒前
谦让含玉发布了新的文献求助10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992518
求助须知:如何正确求助?哪些是违规求助? 3533486
关于积分的说明 11262567
捐赠科研通 3273054
什么是DOI,文献DOI怎么找? 1805922
邀请新用户注册赠送积分活动 882858
科研通“疑难数据库(出版商)”最低求助积分说明 809496