Hybrid modeling with finite element—analysis—neural network for predicting residual stress in orthogonal cutting of H13

材料科学 残余应力 有限元法 人工神经网络 压力(语言学) 残余物 复合材料 机械工程 结构工程 人工智能 算法 计算机科学 工程类 语言学 哲学
作者
Tao Zhou,Tian Zhou,Cheng Zhang,Cong Sun,Hao Cui,Pengfei Tian,Feilong Du,Lin He
出处
期刊:Journal of materials research and technology [Elsevier]
被引量:2
标识
DOI:10.1016/j.jmrt.2024.02.126
摘要

Residual stress is an important surface integrity index to evaluate the crack initiation and failure of die surface. The efficient prediction of cutting residual stress can guide the high-quality machining of die and improve its service life. The existing cutting residual stress prediction models are complex, time-consuming and inefficient. In this paper, a hybrid prediction method of cutting residual stress based on finite element-analytical-neural network is proposed. Firstly, the stress, strain and temperature of the cutting surface are obtained based on the orthogonal cutting finite element model. Then, the stress relaxation analytical algorithm considering the elastic-plastic state of the material is used to replace the stress release process of the finite element, and the residual stress distribution data were obtained based on the joint model of finite element and analytical algorithm. Secondly, the surrogate model of BP neural network (SSA-BP) is improved based on SSA algorithm to realize the rapid prediction of characteristic value of residual stress. The effectiveness of the finite element-analytical-neural network hybrid model was verified by the cutting residual stress test of H13 steel. Finally, the effects of tool structure parameters and cutting parameters on the residual stress distribution and the maximum compressive stress and maximum tensile stress of H13 steel were studied. This method can provide a flexible and efficient basic model for obtaining the optimal cutting conditions for controlling the residual stress of H13 steel and other metals.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ahha发布了新的文献求助10
1秒前
1秒前
danxue完成签到,获得积分10
1秒前
2秒前
完美世界应助科研通管家采纳,获得10
3秒前
甜甜玫瑰应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得30
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
甜甜玫瑰应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
Singularity应助科研通管家采纳,获得20
4秒前
4秒前
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
执着玫瑰完成签到,获得积分10
5秒前
5秒前
鸡腿战神完成签到,获得积分10
5秒前
7秒前
lng关闭了lng文献求助
9秒前
Lucas应助zhuangzhu采纳,获得10
9秒前
9秒前
无心的热狗完成签到,获得积分10
10秒前
点点发布了新的文献求助20
10秒前
ztt发布了新的文献求助10
10秒前
10秒前
小旭不会飞完成签到,获得积分10
11秒前
11秒前
12秒前
李杰发布了新的文献求助10
12秒前
Radish完成签到 ,获得积分10
13秒前
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138888
求助须知:如何正确求助?哪些是违规求助? 2789815
关于积分的说明 7792820
捐赠科研通 2446185
什么是DOI,文献DOI怎么找? 1300930
科研通“疑难数据库(出版商)”最低求助积分说明 626066
版权声明 601079