Hybrid modeling with finite element—analysis—neural network for predicting residual stress in orthogonal cutting of H13

材料科学 残余应力 有限元法 人工神经网络 机械加工 压力(语言学) 表面完整性 残余物 复合材料 结构工程 冶金 算法 计算机科学 工程类 机器学习 哲学 语言学
作者
Tao Zhou,Tian Zhou,Cheng Zhang,Cong Sun,Hao Cui,Pengfei Tian,Feilong Du,Lin He
出处
期刊:Journal of materials research and technology [Elsevier]
卷期号:29: 4954-4977 被引量:3
标识
DOI:10.1016/j.jmrt.2024.02.126
摘要

Residual stress is an important surface integrity index to evaluate the crack initiation and failure of die surface. The efficient prediction of cutting residual stress can guide the high-quality machining of die and improve its service life. The existing cutting residual stress prediction models are complex, time-consuming and inefficient. In this paper, a hybrid prediction method of cutting residual stress based on finite element-analytical-neural network is proposed. Firstly, the stress, strain and temperature of the cutting surface are obtained based on the orthogonal cutting finite element model. Then, the stress relaxation analytical algorithm considering the elastic-plastic state of the material is used to replace the stress release process of the finite element, and the residual stress distribution data were obtained based on the joint model of finite element and analytical algorithm. Secondly, the surrogate model of BP neural network (SSA-BP) is improved based on SSA algorithm to realize the rapid prediction of characteristic value of residual stress. The effectiveness of the finite element-analytical-neural network hybrid model was verified by the cutting residual stress test of H13 steel. Finally, the effects of tool structure parameters and cutting parameters on the residual stress distribution and the maximum compressive stress and maximum tensile stress of H13 steel were studied. This method can provide a flexible and efficient basic model for obtaining the optimal cutting conditions for controlling the residual stress of H13 steel and other metals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助zheweiwang采纳,获得10
1秒前
方大发布了新的文献求助10
2秒前
3秒前
3秒前
Friday完成签到,获得积分10
3秒前
稳重傲白完成签到 ,获得积分10
5秒前
脑洞疼应助6a采纳,获得10
6秒前
6秒前
6秒前
莎莎发布了新的文献求助10
9秒前
Jasper应助蟹黄堡采纳,获得10
11秒前
博珺辰发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
13秒前
15秒前
李爱国应助科研通管家采纳,获得10
16秒前
无极微光应助科研通管家采纳,获得20
16秒前
小马甲应助科研通管家采纳,获得10
16秒前
wanci应助科研通管家采纳,获得10
16秒前
乐乐应助科研通管家采纳,获得10
16秒前
田様应助科研通管家采纳,获得10
16秒前
Orange应助科研通管家采纳,获得10
17秒前
田様应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
刻苦藏今完成签到,获得积分10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
自觉鸵鸟发布了新的文献求助10
18秒前
方大完成签到,获得积分10
18秒前
wade2016发布了新的文献求助10
18秒前
19秒前
浮游应助万万没想到采纳,获得10
19秒前
20秒前
KRR发布了新的文献求助30
20秒前
tq关注了科研通微信公众号
20秒前
SciGPT应助饱满的亦旋采纳,获得10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5422108
求助须知:如何正确求助?哪些是违规求助? 4537012
关于积分的说明 14155721
捐赠科研通 4453595
什么是DOI,文献DOI怎么找? 2442968
邀请新用户注册赠送积分活动 1434374
关于科研通互助平台的介绍 1411439