Constructing polynomial libraries for reservoir computing in nonlinear dynamical system forecasting

油藏计算 非线性系统 多项式的 混乱的 计算机科学 洛伦兹系统 动力系统理论 操作员(生物学) 领域(数学) 数学优化 应用数学 算法 数学 人工神经网络 人工智能 循环神经网络 数学分析 物理 量子力学 生物化学 化学 抑制因子 纯数学 转录因子 基因
作者
Hu-Hu Ren,Yulong Bai,Man-Hong Fan,Lei Ding,Xiaokui Yue,Qinghe Yu
出处
期刊:Physical review 卷期号:109 (2) 被引量:1
标识
DOI:10.1103/physreve.109.024227
摘要

Reservoir computing is an effective model for learning and predicting nonlinear and chaotic dynamical systems; however, there remains a challenge in achieving a more dependable evolution for such systems. Based on the foundation of Koopman operator theory, considering the effectiveness of the sparse identification of nonlinear dynamics algorithm to construct candidate nonlinear libraries in the application of nonlinear data, an alternative reservoir computing method is proposed, which creates the linear Hilbert space of the nonlinear system by including nonlinear terms in the optimization process of reservoir computing, allowing for the application of linear optimization. We introduce an implementation that incorporates a polynomial transformation of arbitrary order when fitting the readout matrix. Constructing polynomial libraries with reservoir-state vectors as elements enhances the nonlinear representation of reservoir states and more easily captures the complexity of nonlinear systems. The Lorenz-63 system, the Lorenz-96 system, and the Kuramoto-Sivashinsky equation are used to validate the effectiveness of constructing polynomial libraries for reservoir states in the field of state-evolution prediction of nonlinear and chaotic dynamical systems. This study not only promotes the theoretical study of reservoir computing, but also provides a theoretical and practical method for the prediction of nonlinear and chaotic dynamical system evolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
36456657应助八九采纳,获得50
刚刚
潦草完成签到,获得积分20
刚刚
华仔应助科研通管家采纳,获得10
刚刚
freesialll完成签到 ,获得积分10
刚刚
深情安青应助科研通管家采纳,获得30
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得20
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
摇摇晃晃完成签到 ,获得积分10
1秒前
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
贪玩手链应助科研通管家采纳,获得20
1秒前
科研通AI5应助科研通管家采纳,获得30
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
李健的小迷弟应助liyi采纳,获得10
2秒前
华仔应助科研通管家采纳,获得20
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得20
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得20
2秒前
2秒前
2秒前
Ava应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
pluto应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
4秒前
FFFFFFF应助yatou5651采纳,获得10
4秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740