电催化剂
酞菁
共价键
电导率
材料科学
共价有机骨架
氢键
氢
可逆氢电极
纳米技术
化学
电极
有机化学
物理化学
电化学
分子
参比电极
作者
Mingrun Li,Bin Han,Senzhi Li,Qi Zhang,Enhui Zhang,Lei Gong,Dongdong Qi,Kang Wang,Jianzhuang Jiang
出处
期刊:Small
[Wiley]
日期:2024-02-20
卷期号:20 (30)
被引量:7
标识
DOI:10.1002/smll.202310147
摘要
Abstract Fabricating COFs‐based electrocatalysts with high stability and conductivity still remains a great challenge. Herein, 2D polyimide‐linked phthalocyanine COF (denoted as NiPc‐OH‐COF) is constructed via solvothermal reaction between tetraanhydrides of 2,3,9,10,16,17,23,24‐octacarboxyphthalocyaninato nickel(II) and 2,5‐diamino‐1,4‐benzenediol (DB) with other two analogous 2D COFs (denoted as NiPc‐OMe‐COF and NiPc‐H‐COF) synthesized for reference. In comparison with NiPc‐OMe‐COF and NiPc‐H‐COF, NiPc‐OH‐COF exhibits enhanced stability, particularly in strong NaOH solvent and high conductivity of 1.5 × 10 −3 S m −1 due to the incorporation of additional strong interlayer hydrogen bonding interaction between the O−H of DB and the hydroxy “O” atom of DB in adjacent layers. This in turn endows the NiPc‐OH‐COF electrode with ultrahigh CO 2 ‐to‐CO faradaic efficiency (almost 100%) in a wide potential range from −0.7 to −1.1 V versus reversible hydrogen electrode (RHE), a large partial CO current density of −39.2 mA cm −2 at −1.1 V versus RHE, and high turnover number as well as turnover frequency, amounting to 45 000 and 0.76 S −1 at −0.80 V versus RHE during 12 h lasting measurement.
科研通智能强力驱动
Strongly Powered by AbleSci AI