Machine Learning and Deep Learning in Synthetic Biology: Key Architectures, Applications, and Challenges

合成生物学 人工智能 深度学习 计算机科学 系统生物学 生物网络 机器学习 计算生物学 生物
作者
Manoj Kumar Goshisht
出处
期刊:ACS omega [American Chemical Society]
卷期号:9 (9): 9921-9945 被引量:6
标识
DOI:10.1021/acsomega.3c05913
摘要

Machine learning (ML), particularly deep learning (DL), has made rapid and substantial progress in synthetic biology in recent years. Biotechnological applications of biosystems, including pathways, enzymes, and whole cells, are being probed frequently with time. The intricacy and interconnectedness of biosystems make it challenging to design them with the desired properties. ML and DL have a synergy with synthetic biology. Synthetic biology can be employed to produce large data sets for training models (for instance, by utilizing DNA synthesis), and ML/DL models can be employed to inform design (for example, by generating new parts or advising unrivaled experiments to perform). This potential has recently been brought to light by research at the intersection of engineering biology and ML/DL through achievements like the design of novel biological components, best experimental design, automated analysis of microscopy data, protein structure prediction, and biomolecular implementations of ANNs (Artificial Neural Networks). I have divided this review into three sections. In the first section, I describe predictive potential and basics of ML along with myriad applications in synthetic biology, especially in engineering cells, activity of proteins, and metabolic pathways. In the second section, I describe fundamental DL architectures and their applications in synthetic biology. Finally, I describe different challenges causing hurdles in the progress of ML/DL and synthetic biology along with their solutions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无花果应助自由妙竹采纳,获得10
1秒前
1秒前
天天快乐应助默默的甜瓜采纳,获得10
1秒前
Earnestlee完成签到,获得积分10
2秒前
蛙蛙完成签到,获得积分10
3秒前
Mianiu发布了新的文献求助10
4秒前
5秒前
7秒前
8秒前
记得早睡完成签到 ,获得积分10
9秒前
今后应助灿灿采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
对称破缺发布了新的文献求助10
10秒前
siijjfjjf完成签到 ,获得积分10
13秒前
杨小鸿发布了新的文献求助10
14秒前
阿飞发布了新的文献求助10
14秒前
小巧健柏完成签到,获得积分10
15秒前
顾矜应助深井冰采纳,获得10
15秒前
甜甜谷波完成签到 ,获得积分20
16秒前
微血管完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
沥青拌蛋黄完成签到,获得积分10
18秒前
研友_8QyXr8完成签到,获得积分10
19秒前
20秒前
21秒前
超级盼烟完成签到,获得积分10
21秒前
自由妙竹完成签到,获得积分10
21秒前
tion66发布了新的文献求助10
24秒前
26秒前
27秒前
阿飞完成签到,获得积分10
27秒前
Sicily发布了新的文献求助10
28秒前
28秒前
29秒前
29秒前
Millian完成签到 ,获得积分10
29秒前
不想看文献完成签到,获得积分10
30秒前
30秒前
华仔应助杨小鸿采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742261
求助须知:如何正确求助?哪些是违规求助? 5407364
关于积分的说明 15344547
捐赠科研通 4883713
什么是DOI,文献DOI怎么找? 2625203
邀请新用户注册赠送积分活动 1574062
关于科研通互助平台的介绍 1531044