Machine Learning and Deep Learning in Synthetic Biology: Key Architectures, Applications, and Challenges

合成生物学 人工智能 深度学习 计算机科学 系统生物学 生物网络 机器学习 计算生物学 生物
作者
Manoj Kumar Goshisht
出处
期刊:ACS omega [American Chemical Society]
卷期号:9 (9): 9921-9945 被引量:6
标识
DOI:10.1021/acsomega.3c05913
摘要

Machine learning (ML), particularly deep learning (DL), has made rapid and substantial progress in synthetic biology in recent years. Biotechnological applications of biosystems, including pathways, enzymes, and whole cells, are being probed frequently with time. The intricacy and interconnectedness of biosystems make it challenging to design them with the desired properties. ML and DL have a synergy with synthetic biology. Synthetic biology can be employed to produce large data sets for training models (for instance, by utilizing DNA synthesis), and ML/DL models can be employed to inform design (for example, by generating new parts or advising unrivaled experiments to perform). This potential has recently been brought to light by research at the intersection of engineering biology and ML/DL through achievements like the design of novel biological components, best experimental design, automated analysis of microscopy data, protein structure prediction, and biomolecular implementations of ANNs (Artificial Neural Networks). I have divided this review into three sections. In the first section, I describe predictive potential and basics of ML along with myriad applications in synthetic biology, especially in engineering cells, activity of proteins, and metabolic pathways. In the second section, I describe fundamental DL architectures and their applications in synthetic biology. Finally, I describe different challenges causing hurdles in the progress of ML/DL and synthetic biology along with their solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笃定发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
1秒前
陈大侠发布了新的文献求助10
2秒前
充电宝应助坚定的可愁采纳,获得10
3秒前
wj发布了新的文献求助10
4秒前
充电宝应助elle采纳,获得10
5秒前
huazhangchina发布了新的文献求助10
5秒前
Harlotte完成签到 ,获得积分10
5秒前
7秒前
8秒前
蜜桃四季春完成签到,获得积分10
9秒前
安诺发布了新的文献求助30
10秒前
机灵海之完成签到 ,获得积分10
10秒前
研友_8K2QJZ发布了新的文献求助50
11秒前
12秒前
停停走走发布了新的文献求助10
13秒前
SciGPT应助笃定采纳,获得10
13秒前
14秒前
晚晚完成签到,获得积分10
14秒前
123完成签到,获得积分20
15秒前
大个应助务实谷秋采纳,获得10
15秒前
吴大振发布了新的文献求助10
16秒前
apckkk完成签到 ,获得积分10
17秒前
安桥发布了新的文献求助10
18秒前
18秒前
小蘑菇应助无尘采纳,获得10
18秒前
深情安青应助停停走走采纳,获得10
19秒前
粑粑发布了新的文献求助10
19秒前
20秒前
帅气的海露完成签到 ,获得积分10
21秒前
柔弱成危完成签到,获得积分10
21秒前
Owen应助zz采纳,获得10
22秒前
22秒前
ghost完成签到,获得积分10
22秒前
dominate完成签到,获得积分10
24秒前
木子完成签到 ,获得积分10
25秒前
zz发布了新的文献求助10
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137211
求助须知:如何正确求助?哪些是违规求助? 2788244
关于积分的说明 7785274
捐赠科研通 2444247
什么是DOI,文献DOI怎么找? 1299869
科研通“疑难数据库(出版商)”最低求助积分说明 625606
版权声明 601023