Machine Learning and Deep Learning in Synthetic Biology: Key Architectures, Applications, and Challenges

合成生物学 人工智能 深度学习 计算机科学 系统生物学 生物网络 机器学习 计算生物学 生物
作者
Manoj Kumar Goshisht
出处
期刊:ACS omega [American Chemical Society]
卷期号:9 (9): 9921-9945 被引量:6
标识
DOI:10.1021/acsomega.3c05913
摘要

Machine learning (ML), particularly deep learning (DL), has made rapid and substantial progress in synthetic biology in recent years. Biotechnological applications of biosystems, including pathways, enzymes, and whole cells, are being probed frequently with time. The intricacy and interconnectedness of biosystems make it challenging to design them with the desired properties. ML and DL have a synergy with synthetic biology. Synthetic biology can be employed to produce large data sets for training models (for instance, by utilizing DNA synthesis), and ML/DL models can be employed to inform design (for example, by generating new parts or advising unrivaled experiments to perform). This potential has recently been brought to light by research at the intersection of engineering biology and ML/DL through achievements like the design of novel biological components, best experimental design, automated analysis of microscopy data, protein structure prediction, and biomolecular implementations of ANNs (Artificial Neural Networks). I have divided this review into three sections. In the first section, I describe predictive potential and basics of ML along with myriad applications in synthetic biology, especially in engineering cells, activity of proteins, and metabolic pathways. In the second section, I describe fundamental DL architectures and their applications in synthetic biology. Finally, I describe different challenges causing hurdles in the progress of ML/DL and synthetic biology along with their solutions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵保钢发布了新的文献求助10
1秒前
小马甲应助jia采纳,获得10
2秒前
2秒前
科研通AI6应助七七采纳,获得10
3秒前
3秒前
4秒前
Owen应助蘸糖冰美式采纳,获得10
4秒前
鲤鱼凛发布了新的文献求助10
4秒前
7秒前
AslenK完成签到,获得积分10
7秒前
酷波er应助流萤采纳,获得10
9秒前
Lucas应助天才包采纳,获得10
9秒前
小马甲应助鲤鱼凛采纳,获得10
9秒前
10秒前
123321发布了新的文献求助10
11秒前
11秒前
11秒前
英姑应助chen131810采纳,获得10
11秒前
hhan发布了新的文献求助10
11秒前
15秒前
15秒前
16秒前
16秒前
WN发布了新的文献求助10
17秒前
17秒前
嘿嘿发布了新的文献求助10
17秒前
19秒前
sss发布了新的文献求助10
21秒前
科研通AI6应助FBL采纳,获得10
22秒前
22秒前
赵保钢完成签到,获得积分10
22秒前
鲤鱼凛完成签到,获得积分10
23秒前
陈篱发布了新的文献求助10
23秒前
天才包发布了新的文献求助10
24秒前
852应助123采纳,获得10
25秒前
鲤鱼凛发布了新的文献求助10
25秒前
平常破茧完成签到 ,获得积分10
28秒前
29秒前
科研通AI6应助erismax采纳,获得10
29秒前
Hanoi347应助mashibeo采纳,获得30
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536933
求助须知:如何正确求助?哪些是违规求助? 4624592
关于积分的说明 14592446
捐赠科研通 4565023
什么是DOI,文献DOI怎么找? 2502125
邀请新用户注册赠送积分活动 1480875
关于科研通互助平台的介绍 1452098