Machine Learning and Deep Learning in Synthetic Biology: Key Architectures, Applications, and Challenges

合成生物学 人工智能 深度学习 计算机科学 系统生物学 生物网络 机器学习 计算生物学 生物
作者
Manoj Kumar Goshisht
出处
期刊:ACS omega [American Chemical Society]
卷期号:9 (9): 9921-9945 被引量:6
标识
DOI:10.1021/acsomega.3c05913
摘要

Machine learning (ML), particularly deep learning (DL), has made rapid and substantial progress in synthetic biology in recent years. Biotechnological applications of biosystems, including pathways, enzymes, and whole cells, are being probed frequently with time. The intricacy and interconnectedness of biosystems make it challenging to design them with the desired properties. ML and DL have a synergy with synthetic biology. Synthetic biology can be employed to produce large data sets for training models (for instance, by utilizing DNA synthesis), and ML/DL models can be employed to inform design (for example, by generating new parts or advising unrivaled experiments to perform). This potential has recently been brought to light by research at the intersection of engineering biology and ML/DL through achievements like the design of novel biological components, best experimental design, automated analysis of microscopy data, protein structure prediction, and biomolecular implementations of ANNs (Artificial Neural Networks). I have divided this review into three sections. In the first section, I describe predictive potential and basics of ML along with myriad applications in synthetic biology, especially in engineering cells, activity of proteins, and metabolic pathways. In the second section, I describe fundamental DL architectures and their applications in synthetic biology. Finally, I describe different challenges causing hurdles in the progress of ML/DL and synthetic biology along with their solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kikua发布了新的文献求助10
刚刚
纯真的南琴完成签到,获得积分10
3秒前
情怀应助Vincent1990采纳,获得10
3秒前
绝情继父发布了新的文献求助30
3秒前
xi发布了新的文献求助10
4秒前
我是老大应助偷乐采纳,获得10
4秒前
哈呵嚯嘿呀完成签到,获得积分10
6秒前
6秒前
7秒前
今天读文献了吗完成签到,获得积分10
7秒前
wing6发布了新的文献求助10
8秒前
8秒前
bingbing发布了新的文献求助10
10秒前
10秒前
11秒前
薛定谔的电关注了科研通微信公众号
11秒前
茜茜哥哥发布了新的文献求助10
12秒前
希望天下0贩的0应助陈述采纳,获得10
12秒前
13秒前
YYY发布了新的文献求助10
13秒前
Jasper应助。。。采纳,获得10
13秒前
berrycute发布了新的文献求助10
13秒前
yangjoy发布了新的文献求助10
14秒前
ahui发布了新的文献求助10
16秒前
16秒前
Kikua完成签到,获得积分10
16秒前
沈清酌完成签到,获得积分20
17秒前
Lilili发布了新的文献求助10
17秒前
18秒前
沈清酌发布了新的文献求助10
20秒前
科研通AI2S应助berrycute采纳,获得10
20秒前
20秒前
汉堡包应助小阳采纳,获得10
20秒前
20秒前
易子完成签到 ,获得积分10
20秒前
21秒前
rookiefcb发布了新的文献求助30
21秒前
23秒前
Hello应助bingbing采纳,获得10
24秒前
。。。发布了新的文献求助10
24秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998421
求助须知:如何正确求助?哪些是违规求助? 3537865
关于积分的说明 11272824
捐赠科研通 3276939
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883818
科研通“疑难数据库(出版商)”最低求助积分说明 810014