已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Design and validation of an artificial intelligence system to detect the quality of colon cleansing before colonoscopy

结肠镜检查 人工智能 卷积神经网络 计算机科学 医学 内科学 结直肠癌 癌症
作者
Antonio Z. Gimeno‐García,Silvia Alayón-Miranda,Federica Benítez-Zafra,Domingo Hernández-Negrín,David Nicolás‐Pérez,Claudia Pérez Cabañas,Rosa Delgado,Rocío del-Castillo,Ana Romero,Zaida Adrián,Ana Cubas,Yanira González-Méndez,Alejandro Jiménez,Marco A. Navarro-Dávila,Manuel Hernández‐Guerra
出处
期刊:Gastroenterología y Hepatología [Elsevier]
卷期号:47 (5): 481-490
标识
DOI:10.1016/j.gastrohep.2023.12.009
摘要

Patients' perception of their bowel cleansing quality may guide rescue cleansing strategies before colonoscopy. The main aim of this study was to train and validate a convolutional neural network (CNN) for classifying rectal effluent during bowel preparation intake as "adequate" or "inadequate" cleansing before colonoscopy. Patients referred for outpatient colonoscopy were asked to provide images of their rectal effluent during the bowel preparation process. The images were categorized as adequate or inadequate cleansing based on a predefined 4-picture quality scale. A total of 1203 images were collected from 660 patients. The initial dataset (799 images), was split into a training set (80%) and a validation set (20%). The second dataset (404 images) was used to develop a second test of the CNN accuracy. Afterward, CNN prediction was prospectively compared with the Boston Bowel Preparation Scale (BBPS) in 200 additional patients who provided a picture of their last rectal effluent. On the initial dataset, a global accuracy of 97.49%, a sensitivity of 98.17% and a specificity of 96.66% were obtained using the CNN model. On the second dataset, an accuracy of 95%, a sensitivity of 99.60% and a specificity of 87.41% were obtained. The results from the CNN model were significantly associated with those from the BBPS (P < 0.001), and 77.78% of the patients with poor bowel preparation were correctly classified. The designed CNN is capable of classifying "adequate cleansing" and "inadequate cleansing" images with high accuracy. La percepción de los pacientes sobre la calidad de su limpieza intestinal puede guiar las estrategias de limpieza de rescate antes de una colonoscopia. El objetivo principal de este estudio fue entrenar y validar una red neuronal convolucional (CNN) para clasificar el efluente rectal durante la preparación intestinal como «adecuado» o «inadecuado». Pacientes no seleccionados proporcionaron imágenes del efluente rectal durante el proceso de preparación intestinal. Las imágenes fueron categorizadas como una limpieza adecuada o inadecuada según una escala de calidad de 4 imágenes predefinida. Se recopilaron un total de 1.203 imágenes de 660 pacientes. El conjunto de datos inicial (799 imágenes) se dividió en un conjunto de entrenamiento (80%) y un conjunto de validación (20%). Un segundo conjunto de datos (404 imágenes) se utilizó para evaluar la precisión de la CNN. Posteriormente, la predicción de la CNN se comparó prospectivamente con la escala de preparación colónica de Boston (BBPS) en 200 pacientes que proporcionaron una imagen de su último efluente rectal. En el conjunto de datos inicial, la precisión global fue del 97,49%, la sensibilidad del 98,17% y la especificidad del 96,66%. En el segundo conjunto de datos, se obtuvo una precisión del 95%, una sensibilidad del 99,60% y una especificidad del 87,41%. Los resultados del modelo de CNN se asociaron significativamente con la escala de preparación colónica de Boston (p < 0,001), y el 77,78% de los pacientes con una preparación intestinal deficiente fueron clasificados correctamente. La CNN diseñada es capaz de clasificar imágenes de «limpieza adecuada» y «limpieza inadecuada» con alta precisión.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
3秒前
鱼羊明完成签到 ,获得积分10
3秒前
泥嚎发布了新的文献求助10
4秒前
6秒前
闪闪香菱发布了新的文献求助10
6秒前
6秒前
FashionBoy应助宋玮采纳,获得10
7秒前
10秒前
kevinqpp发布了新的文献求助10
12秒前
kejiyn完成签到,获得积分10
15秒前
15秒前
动听紫文完成签到,获得积分10
16秒前
我是熊大完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
相龙完成签到,获得积分10
17秒前
xiaolei001应助zgz采纳,获得10
18秒前
梨花诗发布了新的文献求助10
18秒前
宋玮完成签到,获得积分10
18秒前
丘比特应助科研通管家采纳,获得10
18秒前
18635986106应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
18635986106应助科研通管家采纳,获得10
18秒前
初光应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
19秒前
温暖伟祺完成签到,获得积分10
19秒前
魔梓菌完成签到 ,获得积分10
20秒前
mmmio发布了新的文献求助10
20秒前
21秒前
qu发布了新的文献求助30
23秒前
宋玮发布了新的文献求助10
26秒前
26秒前
oyfff完成签到 ,获得积分10
26秒前
27秒前
nono发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493371
求助须知:如何正确求助?哪些是违规求助? 4591376
关于积分的说明 14433721
捐赠科研通 4523887
什么是DOI,文献DOI怎么找? 2478514
邀请新用户注册赠送积分活动 1463494
关于科研通互助平台的介绍 1436308