An Interpretable Digital Twin for Self-Aware Industrial Machines

可解释性 计算机科学 粒子群优化 可用性 代表(政治) 控制工程 人工智能 机器学习 工程类 人机交互 政治 政治学 法学
作者
João L. Vilar-Dias,Adelson Santos da Silva,Fernando Buarque de Lima Neto
出处
期刊:Sensors [MDPI AG]
卷期号:24 (1): 4-4 被引量:2
标识
DOI:10.3390/s24010004
摘要

This paper presents a proposed three-step methodology designed to enhance the performance and efficiency of industrial systems by integrating Digital Twins with particle swarm optimization (PSO) algorithms while prioritizing interpretability. Digital Twins are becoming increasingly prevalent due to their capability to offer a comprehensive virtual representation of physical systems, thus facilitating detailed simulations and optimizations. Concurrently, PSO has demonstrated its effectiveness for real-time parameter estimation, especially in identifying both standard and unknown components that influence the dynamics of a system. Our methodology, as exemplified through DC Motor and Hydraulic Actuator simulations, underscores the potential of Digital Twins to augment the self-awareness of industrial machines. The results indicate that our approach can proficiently optimize system parameters in real-time and unveil previously unknown components, thereby enhancing the adaptive capacities of the Digital Twin. While the reliance on accurate data to develop Digital Twin models is a notable consideration, the proposed methodology serves as a promising framework for advancing the efficiency of industrial applications. It further extends its relevance to fault detection and system control. Central to our approach is the emphasis on interpretability, ensuring a more transparent understanding and effective usability of such systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
shufessm完成签到,获得积分0
1秒前
boyeer发布了新的文献求助10
2秒前
XXXX完成签到,获得积分10
2秒前
ZZZZ发布了新的文献求助10
4秒前
研友_8DrX3n发布了新的文献求助10
4秒前
万能图书馆应助世界和我采纳,获得100
4秒前
bkagyin应助surprise采纳,获得10
4秒前
5秒前
6秒前
1101592875应助乐仔采纳,获得10
6秒前
汤姆猫发布了新的文献求助10
6秒前
认真浩宇发布了新的文献求助10
6秒前
打打应助天天赚积分采纳,获得30
7秒前
8秒前
所所应助Naturewoman采纳,获得10
8秒前
8秒前
9秒前
高大亦巧完成签到,获得积分10
9秒前
科研通AI6应助ky幻影采纳,获得10
9秒前
张嘉辉发布了新的文献求助10
10秒前
科研通AI6应助下次一定采纳,获得10
10秒前
lmn完成签到,获得积分20
11秒前
12秒前
xiao_J发布了新的文献求助10
12秒前
wxt完成签到,获得积分10
12秒前
超级秋发布了新的文献求助10
13秒前
lbl234发布了新的文献求助10
13秒前
13秒前
如意果汁发布了新的文献求助80
14秒前
银鱼在游发布了新的文献求助10
15秒前
星痕完成签到,获得积分10
15秒前
哈哈哈完成签到,获得积分10
16秒前
扣子发布了新的文献求助10
17秒前
人言可畏完成签到 ,获得积分10
17秒前
17秒前
上官若男应助如意巨人采纳,获得10
17秒前
Naturewoman发布了新的文献求助10
17秒前
18秒前
boyeer完成签到,获得积分10
18秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584143
求助须知:如何正确求助?哪些是违规求助? 4667683
关于积分的说明 14769028
捐赠科研通 4610124
什么是DOI,文献DOI怎么找? 2529622
邀请新用户注册赠送积分活动 1498637
关于科研通互助平台的介绍 1467267