亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Interpretable Digital Twin for Self-Aware Industrial Machines

可解释性 计算机科学 粒子群优化 可用性 代表(政治) 控制工程 人工智能 机器学习 工程类 人机交互 政治 政治学 法学
作者
João L. Vilar-Dias,Adelson Santos da Silva,Fernando Buarque de Lima Neto
出处
期刊:Sensors [MDPI AG]
卷期号:24 (1): 4-4 被引量:2
标识
DOI:10.3390/s24010004
摘要

This paper presents a proposed three-step methodology designed to enhance the performance and efficiency of industrial systems by integrating Digital Twins with particle swarm optimization (PSO) algorithms while prioritizing interpretability. Digital Twins are becoming increasingly prevalent due to their capability to offer a comprehensive virtual representation of physical systems, thus facilitating detailed simulations and optimizations. Concurrently, PSO has demonstrated its effectiveness for real-time parameter estimation, especially in identifying both standard and unknown components that influence the dynamics of a system. Our methodology, as exemplified through DC Motor and Hydraulic Actuator simulations, underscores the potential of Digital Twins to augment the self-awareness of industrial machines. The results indicate that our approach can proficiently optimize system parameters in real-time and unveil previously unknown components, thereby enhancing the adaptive capacities of the Digital Twin. While the reliance on accurate data to develop Digital Twin models is a notable consideration, the proposed methodology serves as a promising framework for advancing the efficiency of industrial applications. It further extends its relevance to fault detection and system control. Central to our approach is the emphasis on interpretability, ensuring a more transparent understanding and effective usability of such systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助dgsxl采纳,获得10
3秒前
mengyao发布了新的文献求助10
5秒前
10秒前
瓶子发布了新的文献求助10
15秒前
无极微光应助72219采纳,获得20
17秒前
20秒前
甜甜纸飞机完成签到 ,获得积分10
26秒前
甜甜的紫菜完成签到 ,获得积分10
33秒前
fygiuh完成签到 ,获得积分10
36秒前
45秒前
47秒前
归尘完成签到,获得积分10
48秒前
瓶子发布了新的文献求助10
50秒前
归尘发布了新的文献求助10
52秒前
无限白羊发布了新的文献求助10
52秒前
xin完成签到,获得积分10
53秒前
56秒前
小滕同学完成签到,获得积分10
58秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
啵子发布了新的文献求助10
1分钟前
1分钟前
sen发布了新的文献求助10
1分钟前
literature发布了新的文献求助10
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
1分钟前
香蕉觅云应助科研通管家采纳,获得10
1分钟前
Lucas应助耳东采纳,获得10
1分钟前
JamesPei应助sjh采纳,获得10
1分钟前
1分钟前
情怀应助sen采纳,获得10
1分钟前
Viiigo完成签到,获得积分10
1分钟前
耳东发布了新的文献求助10
1分钟前
科目三应助王颖超采纳,获得10
1分钟前
1分钟前
瓶子发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780276
求助须知:如何正确求助?哪些是违规求助? 5654271
关于积分的说明 15453001
捐赠科研通 4911021
什么是DOI,文献DOI怎么找? 2643202
邀请新用户注册赠送积分活动 1590841
关于科研通互助平台的介绍 1545346