An Interpretable Digital Twin for Self-Aware Industrial Machines

可解释性 计算机科学 粒子群优化 可用性 代表(政治) 控制工程 人工智能 机器学习 工程类 人机交互 政治 政治学 法学
作者
João L. Vilar-Dias,Adelson Santos da Silva,Fernando Buarque de Lima Neto
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:24 (1): 4-4 被引量:2
标识
DOI:10.3390/s24010004
摘要

This paper presents a proposed three-step methodology designed to enhance the performance and efficiency of industrial systems by integrating Digital Twins with particle swarm optimization (PSO) algorithms while prioritizing interpretability. Digital Twins are becoming increasingly prevalent due to their capability to offer a comprehensive virtual representation of physical systems, thus facilitating detailed simulations and optimizations. Concurrently, PSO has demonstrated its effectiveness for real-time parameter estimation, especially in identifying both standard and unknown components that influence the dynamics of a system. Our methodology, as exemplified through DC Motor and Hydraulic Actuator simulations, underscores the potential of Digital Twins to augment the self-awareness of industrial machines. The results indicate that our approach can proficiently optimize system parameters in real-time and unveil previously unknown components, thereby enhancing the adaptive capacities of the Digital Twin. While the reliance on accurate data to develop Digital Twin models is a notable consideration, the proposed methodology serves as a promising framework for advancing the efficiency of industrial applications. It further extends its relevance to fault detection and system control. Central to our approach is the emphasis on interpretability, ensuring a more transparent understanding and effective usability of such systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光下的沙滩城堡完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
zoe完成签到,获得积分10
1秒前
我我我完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
领导范儿应助Mss采纳,获得10
3秒前
程琳完成签到,获得积分10
3秒前
lvbowen完成签到,获得积分10
3秒前
xzaaaxz完成签到,获得积分10
3秒前
ypyue完成签到,获得积分10
3秒前
fff完成签到 ,获得积分10
3秒前
开心浩阑应助驼鹿队长采纳,获得20
3秒前
悲惨的时光完成签到,获得积分10
5秒前
辉辉发布了新的文献求助10
6秒前
6秒前
11完成签到,获得积分10
6秒前
7秒前
希望天下0贩的0应助HH采纳,获得10
7秒前
7秒前
7秒前
8秒前
9秒前
9秒前
不想看文献完成签到 ,获得积分10
9秒前
马超完成签到 ,获得积分10
10秒前
mof发布了新的文献求助10
10秒前
听闻发布了新的文献求助10
10秒前
辉辉完成签到,获得积分10
10秒前
11秒前
伶俐绿柏发布了新的文献求助10
11秒前
善学以致用应助啊啊啊啊采纳,获得30
11秒前
sweat发布了新的文献求助100
11秒前
11秒前
lone623发布了新的文献求助10
11秒前
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953854
求助须知:如何正确求助?哪些是违规求助? 3499843
关于积分的说明 11096972
捐赠科研通 3230263
什么是DOI,文献DOI怎么找? 1785901
邀请新用户注册赠送积分活动 869663
科研通“疑难数据库(出版商)”最低求助积分说明 801530