Learning to Order for Inventory Systems with Lost Sales and Uncertain Supplies

订单(交换) 库存管理 经济订货量 业务 销售预测 计算机科学 运筹学 运营管理 经济 营销 供应链 数学 财务
作者
Boxiao Chen,Jiashuo Jiang,Jiawei Zhang,Zhengyuan Zhou
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:9
标识
DOI:10.1287/mnsc.2022.02476
摘要

We consider a stochastic lost-sales inventory control system with lead time L over a planning horizon T. Supply is uncertain, and it is a function of the order quantity (because of random yield/capacity, etc.). We aim to minimize the T-period cost, a problem that is known to be computationally intractable even under known distributions of demand and supply. In this paper, we assume that both the demand and supply distributions are unknown and develop a computationally efficient online learning algorithm. We show that our algorithm achieves a regret (i.e., the performance gap between the cost of our algorithm and that of an optimal policy over T periods) of [Formula: see text] when [Formula: see text]. We do so by (1) showing that our algorithm’s cost is higher by at most [Formula: see text] for any [Formula: see text] compared with an optimal constant-order policy under complete information (a widely used algorithm) and (2) leveraging the latter’s known performance guarantee from the existing literature. To the best of our knowledge, a finite sample [Formula: see text] (and polynomial in L) regret bound when benchmarked against an optimal policy is not known before in the online inventory control literature. A key challenge in this learning problem is that both demand and supply data can be censored; hence, only truncated values are observable. We circumvent this challenge by showing that the data generated under an order quantity q 2 allow us to simulate the performance of not only q 2 but also, q 1 for all [Formula: see text], a key observation to obtain sufficient information even under data censoring. By establishing a high-probability coupling argument, we are able to evaluate and compare the performance of different order policies at their steady state within a finite time horizon. Because the problem lacks convexity, commonly used learning algorithms, such as stochastic gradient decent and bisection, cannot be applied, and instead, we develop an active elimination method that adaptively rules out suboptimal solutions. This paper was accepted by Victor Martínez-de-Albéniz, operations management. Funding: This work is supported by the National Science Foundation [Grant CCF-2312205]. Z. Zhou also acknowledges the New York University’s 2024 Center for Global Economy and Business [Faculty Research Grant] and New York University [Research Catalyst Prize]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/mnsc.2022.02476 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
生动丹珍发布了新的文献求助30
刚刚
刚刚
刚刚
CHENCHENG完成签到 ,获得积分10
1秒前
chuyinweilai发布了新的文献求助10
1秒前
easton驳回了英姑应助
1秒前
1秒前
01发布了新的文献求助10
2秒前
2秒前
十字花科完成签到,获得积分10
2秒前
lyn完成签到,获得积分10
3秒前
一盒火柴完成签到,获得积分10
3秒前
3秒前
4秒前
杨傲多完成签到,获得积分10
4秒前
热狗完成签到 ,获得积分10
4秒前
xunxunmimi完成签到,获得积分10
4秒前
朱豪豪完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
5秒前
双予完成签到,获得积分20
5秒前
5秒前
6秒前
HAHAH发布了新的文献求助10
6秒前
7秒前
sophiea发布了新的文献求助10
7秒前
8秒前
wgm完成签到,获得积分10
8秒前
望山云雾发布了新的文献求助10
8秒前
林飞云发布了新的文献求助10
8秒前
aaa发布了新的文献求助10
8秒前
所所应助琉璃采纳,获得10
8秒前
8秒前
Hello应助Liu采纳,获得10
9秒前
zcx完成签到,获得积分20
9秒前
奥丁不言语完成签到 ,获得积分10
9秒前
风趣翠霜完成签到,获得积分10
9秒前
周一完成签到 ,获得积分10
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950593
求助须知:如何正确求助?哪些是违规求助? 3495971
关于积分的说明 11080135
捐赠科研通 3226361
什么是DOI,文献DOI怎么找? 1783812
邀请新用户注册赠送积分活动 867916
科研通“疑难数据库(出版商)”最低求助积分说明 800977