已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Learning to Order for Inventory Systems with Lost Sales and Uncertain Supplies

订单(交换) 库存管理 经济订货量 业务 销售预测 计算机科学 运筹学 运营管理 经济 营销 供应链 数学 财务
作者
Boxiao Chen,Jiashuo Jiang,Jiawei Zhang,Zhengyuan Zhou
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:9
标识
DOI:10.1287/mnsc.2022.02476
摘要

We consider a stochastic lost-sales inventory control system with lead time L over a planning horizon T. Supply is uncertain, and it is a function of the order quantity (because of random yield/capacity, etc.). We aim to minimize the T-period cost, a problem that is known to be computationally intractable even under known distributions of demand and supply. In this paper, we assume that both the demand and supply distributions are unknown and develop a computationally efficient online learning algorithm. We show that our algorithm achieves a regret (i.e., the performance gap between the cost of our algorithm and that of an optimal policy over T periods) of [Formula: see text] when [Formula: see text]. We do so by (1) showing that our algorithm’s cost is higher by at most [Formula: see text] for any [Formula: see text] compared with an optimal constant-order policy under complete information (a widely used algorithm) and (2) leveraging the latter’s known performance guarantee from the existing literature. To the best of our knowledge, a finite sample [Formula: see text] (and polynomial in L) regret bound when benchmarked against an optimal policy is not known before in the online inventory control literature. A key challenge in this learning problem is that both demand and supply data can be censored; hence, only truncated values are observable. We circumvent this challenge by showing that the data generated under an order quantity q 2 allow us to simulate the performance of not only q 2 but also, q 1 for all [Formula: see text], a key observation to obtain sufficient information even under data censoring. By establishing a high-probability coupling argument, we are able to evaluate and compare the performance of different order policies at their steady state within a finite time horizon. Because the problem lacks convexity, commonly used learning algorithms, such as stochastic gradient decent and bisection, cannot be applied, and instead, we develop an active elimination method that adaptively rules out suboptimal solutions. This paper was accepted by Victor Martínez-de-Albéniz, operations management. Funding: This work is supported by the National Science Foundation [Grant CCF-2312205]. Z. Zhou also acknowledges the New York University’s 2024 Center for Global Economy and Business [Faculty Research Grant] and New York University [Research Catalyst Prize]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/mnsc.2022.02476 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
长情如豹发布了新的文献求助10
2秒前
4秒前
626发布了新的文献求助10
5秒前
8秒前
9秒前
9秒前
一一应助JJ采纳,获得10
10秒前
jiangmax发布了新的文献求助10
13秒前
14秒前
15秒前
17秒前
Candice完成签到,获得积分0
17秒前
尹佳慧完成签到,获得积分10
18秒前
尹佳慧发布了新的文献求助10
21秒前
Chemisboy发布了新的文献求助10
22秒前
CipherSage应助小洲王先生采纳,获得10
24秒前
26秒前
充电宝应助wqt采纳,获得10
26秒前
科研通AI2S应助JJ采纳,获得10
27秒前
29秒前
jiangmax完成签到,获得积分10
29秒前
35秒前
NexusExplorer应助wxxxxxxxxxx采纳,获得10
35秒前
活力的采枫完成签到 ,获得积分10
36秒前
36秒前
songsong668发布了新的文献求助10
39秒前
626完成签到,获得积分10
42秒前
小庸医完成签到 ,获得积分10
42秒前
shgd完成签到 ,获得积分10
43秒前
ZSZ完成签到,获得积分10
50秒前
李小萌关注了科研通微信公众号
51秒前
52秒前
celine发布了新的文献求助10
56秒前
积极的香菇完成签到 ,获得积分10
1分钟前
明理的天抒完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
JJ完成签到,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330276
求助须知:如何正确求助?哪些是违规求助? 2959850
关于积分的说明 8597504
捐赠科研通 2638376
什么是DOI,文献DOI怎么找? 1444303
科研通“疑难数据库(出版商)”最低求助积分说明 669096
邀请新用户注册赠送积分活动 656628