对苯二甲酸
材料科学
聚对苯二甲酸乙二醇酯
金属有机骨架
化学工程
阳极
双金属片
锂(药物)
羧酸盐
傅里叶变换红外光谱
吸附
电化学
无机化学
电极
金属
有机化学
聚酯纤维
复合材料
冶金
化学
物理化学
内分泌学
工程类
医学
作者
Li Wang,Kong Meng,Huimin Wang,Yong-Heng Si,Kun Bai,Shaorui Sun
标识
DOI:10.1021/acsami.3c15792
摘要
The recycling of discarded polyethylene terephthalate (PET) plastics produced metal–organic frameworks can effectively minimize environmental pollution and promote sustainable economic development. In this study, we developed a method using NaOH in alcohol and ether solvent environments to degrade PET plastics for synthesizing terephthalic acid. The method achieved a 97.5% degradation rate of PET plastics under a reaction temperature of 80 °C for 60 min. We used terephthalic acid as a ligand from the degradation products to successfully synthesize two types of monometallic and bimetallic CoZn-MOF materials. We investigated the impact of different metal centers and solvents on the electrochemical performance of the MOF materials. The result showed that the MOF-DMF/H2O material maintained a specific capacity of 1485.5 mAh g–1 after 100 cycles at a current density of 500 mA g–1, demonstrating excellent rate capability and cycling stability. In addition, our finding showed that the performance difference might be attributed to the synergistic effect of bimetallic Co2+ and Zn2+ in MOF-DMF/H2O, rapid lithium-ion diffusion and electron transfer rates, and the absence of coordinating solvents. Additionally, the non-in situ X-ray powder diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analysis results showed that lithium storage in the MOF-DMF/H2O electrode mainly depended on the aromatic C6 ring and carboxylate portions of the organic ligands in different charge and discharge states. Lithium ions can be reversibly inserted/removed into/from the electrode material. The physical adsorption on the MOF surface through electrostatic interactions enhanced both capacity and cycling stability. This research provides valuable insight for mitigating solid waste pollution, promoting sustainable economic development, and advancing the extensive applications of MOF materials in lithium-ion batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI