Refining Metabolic Network by Fuzzy Matching of Metabolite Names for Improving Metabolites Ranking Toward the Diseases

排名(信息检索) 匹配(统计) 精炼(冶金) 模糊逻辑 代谢物 计算机科学 人工智能 机器学习 数学 化学 生物化学 统计 物理化学
作者
S. Spelmen Vimalraj,Porkodi Rajendran
出处
期刊:Studies in computational intelligence 卷期号:: 3-18
标识
DOI:10.1007/978-981-99-8853-2_1
摘要

The aberrant form of the metabolites inside the human body is known as a disease in other terms. Metabolite’s impact on the complex diseases of humans is a very crucial one. Therefore, the depth study of the relationships between the metabolites and diseases is very beneficial in understanding pathogenesis. This chapter proposes a network-based method to identify and rank the disease-related metabolites. In this research, for calculating the disease similarity and the metabolite similarity, infer disease similarity and miRNA similarity have been applied. The miRNA-based disease-related metabolite identification performance was further improved by proposing the Subcellular Localization Weight Based miRNA Similarity (SLWBMISM), where subcellular localization of metabolites was considered to find the more similar metabolites. A fuzzy matching algorithm is adopted to identify the identical names from the two models so that the computational complexity of SLWBMISM can be reduced. After obtaining the identical names of metabolites, two models have been merged without duplication, and metabolite similarity is obtained using SLWBMISM. Then the process of reconstructing the metabolic network based on disease and metabolite similarity was done. At last, a random walk is executed on the reconstructed network to identify and rank disease-related metabolites. For this research work total of 1955 metabolites from network A, 883 metabolites from network B, and 662 diseases were extracted from the experimental datasets. Both networks are merged, and fuzzy matching of metabolite names is applied to avoid the redundant metabolite participating in the metabolite network more than one time. After applying the SLWBMISM method to the merged network, 594521 similarities have been obtained. The proposed method, FM-SLWBMISM, helps find more similar metabolites and enhances the efficiency of SLWBMISM in identifying metabolite prioritization toward complex diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嚯嚯嚯完成签到,获得积分10
1秒前
Kelly1426完成签到,获得积分10
1秒前
清脆糖豆发布了新的文献求助10
2秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
bkagyin应助Maestro_S采纳,获得10
5秒前
科研通AI6应助载尘采纳,获得10
6秒前
8秒前
瘦瘦不斜发布了新的文献求助10
9秒前
10秒前
12秒前
小小脆脆鲨完成签到 ,获得积分10
13秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
18秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
可爱的坤发布了新的文献求助20
23秒前
24秒前
26秒前
橙子完成签到 ,获得积分10
26秒前
HENHer关注了科研通微信公众号
27秒前
28秒前
28秒前
JamesPei应助Joker采纳,获得10
29秒前
30秒前
耍酷发布了新的文献求助20
30秒前
jiaheyuan发布了新的文献求助10
31秒前
31秒前
JamesPei应助Hhh采纳,获得10
31秒前
量子星尘发布了新的文献求助10
34秒前
充电宝应助壮观的凝阳采纳,获得10
34秒前
Luuu关注了科研通微信公众号
35秒前
38秒前
40秒前
小二郎应助michen采纳,获得10
40秒前
41秒前
41秒前
雾里看花水中望月完成签到,获得积分20
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675174
求助须知:如何正确求助?哪些是违规求助? 4943579
关于积分的说明 15151713
捐赠科研通 4834349
什么是DOI,文献DOI怎么找? 2589438
邀请新用户注册赠送积分活动 1543035
关于科研通互助平台的介绍 1501031