已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Refining Metabolic Network by Fuzzy Matching of Metabolite Names for Improving Metabolites Ranking Toward the Diseases

排名(信息检索) 匹配(统计) 精炼(冶金) 模糊逻辑 代谢物 计算机科学 人工智能 机器学习 数学 化学 生物化学 统计 物理化学
作者
S. Spelmen Vimalraj,Porkodi Rajendran
出处
期刊:Studies in computational intelligence 卷期号:: 3-18
标识
DOI:10.1007/978-981-99-8853-2_1
摘要

The aberrant form of the metabolites inside the human body is known as a disease in other terms. Metabolite’s impact on the complex diseases of humans is a very crucial one. Therefore, the depth study of the relationships between the metabolites and diseases is very beneficial in understanding pathogenesis. This chapter proposes a network-based method to identify and rank the disease-related metabolites. In this research, for calculating the disease similarity and the metabolite similarity, infer disease similarity and miRNA similarity have been applied. The miRNA-based disease-related metabolite identification performance was further improved by proposing the Subcellular Localization Weight Based miRNA Similarity (SLWBMISM), where subcellular localization of metabolites was considered to find the more similar metabolites. A fuzzy matching algorithm is adopted to identify the identical names from the two models so that the computational complexity of SLWBMISM can be reduced. After obtaining the identical names of metabolites, two models have been merged without duplication, and metabolite similarity is obtained using SLWBMISM. Then the process of reconstructing the metabolic network based on disease and metabolite similarity was done. At last, a random walk is executed on the reconstructed network to identify and rank disease-related metabolites. For this research work total of 1955 metabolites from network A, 883 metabolites from network B, and 662 diseases were extracted from the experimental datasets. Both networks are merged, and fuzzy matching of metabolite names is applied to avoid the redundant metabolite participating in the metabolite network more than one time. After applying the SLWBMISM method to the merged network, 594521 similarities have been obtained. The proposed method, FM-SLWBMISM, helps find more similar metabolites and enhances the efficiency of SLWBMISM in identifying metabolite prioritization toward complex diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈基米德应助科研通管家采纳,获得20
刚刚
Ak完成签到,获得积分0
刚刚
Owen应助科研通管家采纳,获得30
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
1秒前
GingerF应助科研通管家采纳,获得50
1秒前
哈基米德应助科研通管家采纳,获得20
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
哈基米德应助科研通管家采纳,获得20
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
小蘑菇应助qianqina采纳,获得10
2秒前
感动手链完成签到,获得积分10
4秒前
555完成签到,获得积分10
6秒前
Fxy完成签到 ,获得积分10
7秒前
挚智完成签到 ,获得积分10
9秒前
10秒前
haohaohao完成签到,获得积分10
10秒前
sunyt完成签到,获得积分10
11秒前
情怀应助Yi采纳,获得10
11秒前
浮游应助远方采纳,获得10
13秒前
不可以哦完成签到 ,获得积分10
13秒前
14秒前
rick3455完成签到 ,获得积分10
15秒前
开放的亦竹完成签到,获得积分10
15秒前
执念完成签到 ,获得积分10
16秒前
17秒前
耶耶完成签到,获得积分20
18秒前
Doctor完成签到 ,获得积分10
18秒前
拼搏的寒凝完成签到 ,获得积分10
19秒前
大学生完成签到 ,获得积分10
19秒前
林林发布了新的文献求助10
20秒前
Only1完成签到,获得积分10
21秒前
轻松笙完成签到,获得积分10
22秒前
小张同学完成签到 ,获得积分10
25秒前
DChen完成签到 ,获得积分10
26秒前
嘟嘟雯完成签到 ,获得积分10
27秒前
27秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345304
求助须知:如何正确求助?哪些是违规求助? 4480383
关于积分的说明 13945939
捐赠科研通 4377758
什么是DOI,文献DOI怎么找? 2405455
邀请新用户注册赠送积分活动 1398029
关于科研通互助平台的介绍 1370386