Refining Metabolic Network by Fuzzy Matching of Metabolite Names for Improving Metabolites Ranking Toward the Diseases

排名(信息检索) 匹配(统计) 精炼(冶金) 模糊逻辑 代谢物 计算机科学 人工智能 机器学习 数学 化学 生物化学 统计 物理化学
作者
S. Spelmen Vimalraj,Porkodi Rajendran
出处
期刊:Studies in computational intelligence 卷期号:: 3-18
标识
DOI:10.1007/978-981-99-8853-2_1
摘要

The aberrant form of the metabolites inside the human body is known as a disease in other terms. Metabolite’s impact on the complex diseases of humans is a very crucial one. Therefore, the depth study of the relationships between the metabolites and diseases is very beneficial in understanding pathogenesis. This chapter proposes a network-based method to identify and rank the disease-related metabolites. In this research, for calculating the disease similarity and the metabolite similarity, infer disease similarity and miRNA similarity have been applied. The miRNA-based disease-related metabolite identification performance was further improved by proposing the Subcellular Localization Weight Based miRNA Similarity (SLWBMISM), where subcellular localization of metabolites was considered to find the more similar metabolites. A fuzzy matching algorithm is adopted to identify the identical names from the two models so that the computational complexity of SLWBMISM can be reduced. After obtaining the identical names of metabolites, two models have been merged without duplication, and metabolite similarity is obtained using SLWBMISM. Then the process of reconstructing the metabolic network based on disease and metabolite similarity was done. At last, a random walk is executed on the reconstructed network to identify and rank disease-related metabolites. For this research work total of 1955 metabolites from network A, 883 metabolites from network B, and 662 diseases were extracted from the experimental datasets. Both networks are merged, and fuzzy matching of metabolite names is applied to avoid the redundant metabolite participating in the metabolite network more than one time. After applying the SLWBMISM method to the merged network, 594521 similarities have been obtained. The proposed method, FM-SLWBMISM, helps find more similar metabolites and enhances the efficiency of SLWBMISM in identifying metabolite prioritization toward complex diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助默默纲采纳,获得30
刚刚
2秒前
生动白开水完成签到,获得积分10
2秒前
丰知然举报聂珩求助涉嫌违规
2秒前
chuizi90发布了新的文献求助10
3秒前
傲娇文博发布了新的文献求助30
3秒前
馅饼完成签到,获得积分10
4秒前
4秒前
luckyking发布了新的文献求助20
4秒前
努力的学完成签到,获得积分10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
5秒前
萧水白应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
彭于彦祖应助科研通管家采纳,获得30
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
小叮当完成签到 ,获得积分10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
cannon8应助科研通管家采纳,获得20
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
ldgsd完成签到,获得积分10
6秒前
Maliketh应助科研通管家采纳,获得20
6秒前
木木应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
6秒前
ttt发布了新的文献求助10
7秒前
呵呵喊我完成签到,获得积分10
7秒前
风趣的梦露完成签到 ,获得积分10
8秒前
neverever完成签到,获得积分10
8秒前
8秒前
林谷雨完成签到 ,获得积分10
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3291792
求助须知:如何正确求助?哪些是违规求助? 2928259
关于积分的说明 8436220
捐赠科研通 2600160
什么是DOI,文献DOI怎么找? 1418904
科研通“疑难数据库(出版商)”最低求助积分说明 660203
邀请新用户注册赠送积分活动 642825