Refining Metabolic Network by Fuzzy Matching of Metabolite Names for Improving Metabolites Ranking Toward the Diseases

排名(信息检索) 匹配(统计) 精炼(冶金) 模糊逻辑 代谢物 计算机科学 人工智能 机器学习 数学 化学 生物化学 统计 物理化学
作者
S. Spelmen Vimalraj,Porkodi Rajendran
出处
期刊:Studies in computational intelligence 卷期号:: 3-18
标识
DOI:10.1007/978-981-99-8853-2_1
摘要

The aberrant form of the metabolites inside the human body is known as a disease in other terms. Metabolite’s impact on the complex diseases of humans is a very crucial one. Therefore, the depth study of the relationships between the metabolites and diseases is very beneficial in understanding pathogenesis. This chapter proposes a network-based method to identify and rank the disease-related metabolites. In this research, for calculating the disease similarity and the metabolite similarity, infer disease similarity and miRNA similarity have been applied. The miRNA-based disease-related metabolite identification performance was further improved by proposing the Subcellular Localization Weight Based miRNA Similarity (SLWBMISM), where subcellular localization of metabolites was considered to find the more similar metabolites. A fuzzy matching algorithm is adopted to identify the identical names from the two models so that the computational complexity of SLWBMISM can be reduced. After obtaining the identical names of metabolites, two models have been merged without duplication, and metabolite similarity is obtained using SLWBMISM. Then the process of reconstructing the metabolic network based on disease and metabolite similarity was done. At last, a random walk is executed on the reconstructed network to identify and rank disease-related metabolites. For this research work total of 1955 metabolites from network A, 883 metabolites from network B, and 662 diseases were extracted from the experimental datasets. Both networks are merged, and fuzzy matching of metabolite names is applied to avoid the redundant metabolite participating in the metabolite network more than one time. After applying the SLWBMISM method to the merged network, 594521 similarities have been obtained. The proposed method, FM-SLWBMISM, helps find more similar metabolites and enhances the efficiency of SLWBMISM in identifying metabolite prioritization toward complex diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
在水一方应助陨yue采纳,获得10
刚刚
小二郎应助LKSkywalker采纳,获得10
1秒前
所所应助累哥采纳,获得10
2秒前
3秒前
量子星尘发布了新的文献求助150
3秒前
彭云完成签到,获得积分10
3秒前
5秒前
morii完成签到,获得积分10
5秒前
银子吃好的完成签到,获得积分10
6秒前
6秒前
7秒前
罐装冰块发布了新的文献求助10
7秒前
wanci应助11采纳,获得10
7秒前
cc123完成签到,获得积分10
8秒前
慕青应助wwww采纳,获得10
8秒前
累哥完成签到,获得积分20
9秒前
Zxx完成签到,获得积分10
9秒前
xu发布了新的文献求助10
10秒前
jacob258发布了新的文献求助10
10秒前
大模型应助lmg采纳,获得10
10秒前
辛卫铎发布了新的文献求助10
10秒前
薛定谔的猫完成签到,获得积分10
10秒前
乔治完成签到 ,获得积分10
10秒前
he发布了新的文献求助10
11秒前
西贝子子完成签到,获得积分10
11秒前
11秒前
英姑应助whisper1108采纳,获得10
11秒前
零陌关注了科研通微信公众号
12秒前
13秒前
13秒前
壹yi完成签到,获得积分10
13秒前
13秒前
14秒前
乔治关注了科研通微信公众号
14秒前
keepory86发布了新的文献求助10
14秒前
welbeck完成签到,获得积分10
14秒前
Jasper应助HHHAN采纳,获得10
14秒前
哈雷彗星发布了新的文献求助10
14秒前
L1完成签到 ,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953820
求助须知:如何正确求助?哪些是违规求助? 3499685
关于积分的说明 11096658
捐赠科研通 3230222
什么是DOI,文献DOI怎么找? 1785901
邀请新用户注册赠送积分活动 869656
科研通“疑难数据库(出版商)”最低求助积分说明 801514