清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Forecasting the Price of Bitcoin Using an Explainable CNN-LSTM Model

计算机科学 人工智能
作者
S. Chen,Zonghu Liao,Jingbo Zhang
出处
期刊:Communications in computer and information science 卷期号:: 93-101
标识
DOI:10.1007/978-981-97-0065-3_7
摘要

Artificial Intelligence (AI) significantly improves time series forecasting in the financial market, yet it is challenging to establish reliable real-world finance applications due to a lack of transparency and explainability. This paper prototypes an explainable CNN-LSTM model that combines the advantages of CNN and LSTM (Long and Short Term) to train and forecast the price of Bitcoin using a group of 11 determinants. By avoiding information loss and information superposition, it combines long-term context information and short-term feature information to obtain comprehensive and accurate feature representation. Experiments show that CNN-LSTM generally has higher accuracy than a single LSTM network when processing and predicting Bitcoin sequence data, as measured by a mean absolute percentage error (MAPE) of 2.39% and an accuracy of 89.54%. Additionally, the CNN-LSTM model explains that trading volume and prices (Low, High, Open) contribute to the price dynamics, while oil and Dow Jones Index (DJI) influence the price behavior at a low level. We argue that understanding these underlying explanatory determinants may increase the reliability of AI’s prediction in the cryptocurrency and general finance market.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kkscanl完成签到 ,获得积分10
15秒前
CadoreK完成签到 ,获得积分10
29秒前
科研通AI2S应助予秋采纳,获得10
30秒前
香蕉觅云应助科研通管家采纳,获得10
35秒前
ceeray23应助科研通管家采纳,获得10
35秒前
Hello应助Kkk118采纳,获得10
37秒前
widesky777完成签到 ,获得积分10
38秒前
予秋发布了新的文献求助10
43秒前
笑傲完成签到,获得积分10
45秒前
53秒前
予秋完成签到,获得积分10
54秒前
Dawn发布了新的文献求助10
57秒前
1分钟前
巴豆完成签到 ,获得积分10
1分钟前
1分钟前
Harlotte完成签到 ,获得积分10
1分钟前
飞翔的企鹅完成签到,获得积分10
1分钟前
默默问芙完成签到,获得积分10
1分钟前
chenxiaofang完成签到 ,获得积分10
1分钟前
快乐的90后fjk完成签到 ,获得积分10
1分钟前
豆子完成签到 ,获得积分10
1分钟前
Axs完成签到,获得积分10
2分钟前
木子木子粒完成签到 ,获得积分10
2分钟前
tongttt完成签到,获得积分10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
Arctic完成签到 ,获得积分10
3分钟前
隐形曼青应助陈博士采纳,获得10
3分钟前
3分钟前
SciGPT应助ceeray23采纳,获得20
3分钟前
单纯的蚂蚁完成签到,获得积分10
3分钟前
笨笨完成签到 ,获得积分10
3分钟前
lucky完成签到 ,获得积分10
3分钟前
缓慢的灵枫完成签到 ,获得积分10
3分钟前
ghost完成签到 ,获得积分10
3分钟前
佳言2009完成签到 ,获得积分10
3分钟前
3分钟前
Kkk118发布了新的文献求助10
4分钟前
Owen应助ceeray23采纳,获得20
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599901
求助须知:如何正确求助?哪些是违规求助? 4685655
关于积分的说明 14838739
捐赠科研通 4673146
什么是DOI,文献DOI怎么找? 2538396
邀请新用户注册赠送积分活动 1505574
关于科研通互助平台的介绍 1470985