再生(生物学)
糖尿病
内皮干细胞
脐静脉
细胞生物学
血管
医学
生物
病态的
内皮功能障碍
人脐静脉内皮细胞
病理
内科学
内分泌学
生物化学
体外
作者
Kui Wang,Yongmei Ge,Yang Yong,Zhenjian Li,Jiayi Liu,Y.Z.B. Xue,Yuanjun Zhang,Xiangchao Pang,A.H.W. Ngan,Bin Tang
摘要
Abstract Diabetes is one of the most prevalent diseases worldwide. The tissue regeneration of diabetes patients is known to be rather tricky as the result of vascular dysfunction, and this leads to various clinical complications including diabetic foot ulcers. The vascular endothelial cells, which compactly line the inner surface of blood vessels, are responsible for the growth and maintenance of blood vessels and play an essential role in tissue regeneration. Although the mechanical properties of cells are generally known to be regulated by physiological/pathological conditions, few studies have been performed to investigate vascular endothelial cellular mechanics under hyperglycemia and the biological functions related to tissue regeneration. In this study, we conduct a systematic investigation of this issue. The results suggested that the stiffness of human umbilical vein endothelial cells (HUVECs) can be significantly regulated by the glucose concentration, subsequently, leading to significant alterations in cell migration and proliferation capabilities that are closely related to tissue regeneration. The rearrangement of the cytoskeleton induced by hyperglycemia through Cdc42 was found to be one of the pathways for the alteration of the cell stiffness and the subsequent cell dysfunctions. Therefore, we suggested that the inhibition of Cdc42 might be a promising strategy to facilitate various tissue regeneration for diabetes patients.
科研通智能强力驱动
Strongly Powered by AbleSci AI