清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Real-time detection and counting of wheat ears based on improved YOLOv7

计算机科学 人工智能
作者
Zilin Li,Yanjun Zhu,Shunshun Sui,Yonghao Zhao,Ping Liu,Xiang Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:218: 108670-108670 被引量:5
标识
DOI:10.1016/j.compag.2024.108670
摘要

The quantity of wheat ears is among the three key variables influencing wheat yield and holds a crucial position in practical agricultural production. However, due to the complex natural environment and tracking stability, there are still considerable challenges for automated and accurate wheat ear counting to be deployed in practice. Therefore, this study presents an improved wheat ear counting method that combines object detection (based on YOLOv7), multiple object tracking (based on DeepSORT), and cross-line partitioning counting. Firstly, DCNv3 was used as a partial convolution within the backbone network to solve the inherent constraints associated with long-range dependence and adaptive spatial aggregation in standard convolution. Secondly, PConv in FasterNet was used as the standard convolution in the ELAN-W module to reduce redundant computations and memory accesses during the training process, resulting in a more lightweight model. In addition, the feature fusion process in the head was enhanced by improving the Concat operation and replacing the PANet structure with BiFPN to achieve a more efficient fusion of wheat ear features. Furthermore, three CBAM attention modules were increased at the connection between the backbone and head network to increase the sensitivity of the network to the characteristics of wheat ears. Finally, a cross-line partition counting method based on DeepSORT was designed in the study to overcome the problem of tracked wheat ear ID switch and to track wheat ears in continuous frames. Experiments on the test set showed that the improved YOLOv7 achieved a detection precision of 93.8 %, with [email protected] reaching 94.9 %, representing a 3.1 % improvement over the YOLOv7 model. The size of the improved YOLOv7 model is 57.7 MB, which is 79 % of the original model size. The precision of the improved YOLOv7+DeepSORT multi-target tracking model reached 93.0 %, which was 6.9 % higher than that of the initial YOLOv7+DeepSORT model, and the MOTA was 82.3 %, which was 9.6 % higher than the original model. The results of the counting experiment showed that the average accuracy of the cross-line partition counting method reached more than 97.5 %, and the model ran at a speed of 19.2 Fps, enabling stable real-time wheat ear counting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JJ完成签到 ,获得积分10
23秒前
31秒前
jason发布了新的文献求助10
36秒前
顾矜应助勾陈一采纳,获得10
1分钟前
耶耶耶完成签到 ,获得积分10
1分钟前
1分钟前
xun发布了新的文献求助10
1分钟前
meng完成签到 ,获得积分10
1分钟前
个性仙人掌完成签到 ,获得积分10
1分钟前
含糊的茹妖完成签到 ,获得积分10
1分钟前
拓跋雨梅完成签到 ,获得积分10
1分钟前
今后应助xun采纳,获得10
2分钟前
ee_Liu完成签到,获得积分10
2分钟前
红薯干完成签到,获得积分10
2分钟前
研友_ZG4ml8完成签到 ,获得积分10
2分钟前
2分钟前
xun发布了新的文献求助10
2分钟前
开心每一天完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
容布丁发布了新的文献求助10
2分钟前
3分钟前
sbmanishi完成签到,获得积分20
3分钟前
勾陈一发布了新的文献求助10
3分钟前
sbmanishi发布了新的文献求助30
3分钟前
蓝色的纪念完成签到,获得积分10
3分钟前
郑雅柔完成签到 ,获得积分10
3分钟前
爆米花应助sbmanishi采纳,获得10
3分钟前
勾陈一完成签到,获得积分10
3分钟前
科目三应助fox采纳,获得30
3分钟前
经管研究生完成签到 ,获得积分10
3分钟前
3分钟前
嗨好发布了新的文献求助10
3分钟前
菠萝谷波完成签到 ,获得积分10
3分钟前
科研通AI2S应助whuhustwit采纳,获得10
3分钟前
华北走地鸡完成签到,获得积分10
3分钟前
斯文败类应助xun采纳,获得10
3分钟前
荔枝波波加油完成签到 ,获得积分10
3分钟前
whuhustwit完成签到,获得积分10
4分钟前
4分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142823
求助须知:如何正确求助?哪些是违规求助? 2793662
关于积分的说明 7807147
捐赠科研通 2449982
什么是DOI,文献DOI怎么找? 1303563
科研通“疑难数据库(出版商)”最低求助积分说明 627016
版权声明 601350