Combining Bismuth nanoclusters embedded 3D carbon nanofiber Aerogels: Towards fast and ultra-durable faradic capacitive deionization

海水淡化 材料科学 电容去离子 阳极 纳米技术 化学工程 碳纤维 纳米结构 电极 复合材料 化学 冶金 物理化学 工程类 复合数 生物化学
作者
Ziping Wang,Zixin Guo,Qianhui Ma,Genzhe Shen,Bo Xiao,Lingyu Zhang,Qiang Li,Yong Liu,Xun Yuan
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:482: 149028-149028 被引量:11
标识
DOI:10.1016/j.cej.2024.149028
摘要

Faradic-based capacitive deionization (FDI) has been recognized as one of the most promising technologies to solve the freshwater crisis, yet was hindered mostly by the relatively low desalination rate and sluggish long-term stability of its anode materials. Through careful analysis, the origin of the slow desalination rate was determined to be the faradic diffusion and mass transfer, while the poor cycling stability could be originated from the volumetric expansion of the redox-active material as well as structural damage caused by the uneven stress during multicycle operation. Herein, we developed a Bi nanocluster (NCs) embedded in carbon nanofiber aerogels (Bi NCs@CNFAs) nanostructure as chloride-capturing electrodes for FDI. The essence of this work lies in the design of the "multi-layer protection" shell that could not only limit the volumetric expansion of the Bi NCs (inner protection layer) but also alleviate the stress caused by potential structure changes (outer buffer layer). As a result, the Bi NCs@CNFAs-based FDI display ultra-fast desalination kinetics (0.524 mg g−1 s−1) with remarkable long-term stability (only 8 % reduction over 250 cycles), significantly outperformed the highest value reported in the literature so far. This study is interesting because it exemplifies the significance of problem-driven strategy (nanocluster-induced surface-driven capacitance to address slow desalination kinetics; rigid carbon shell to suppress the volumetric expansion of Bi NCs; CNFAs scaffold to address potential structural damage and aggregation) to improve the desalination performance of FDI, which could further motivate advancements of highly effective desalination systems in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助kqd采纳,获得10
刚刚
小蘑菇应助明亮谷波采纳,获得10
刚刚
乘风破浪完成签到,获得积分10
1秒前
小榕完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
搜集达人应助冷傲听白采纳,获得10
1秒前
1秒前
2秒前
yang完成签到,获得积分10
2秒前
俭朴的谷云完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
dudu发布了新的文献求助10
3秒前
小二郎应助nam采纳,获得10
4秒前
4秒前
thy完成签到,获得积分10
5秒前
呜呜呜发布了新的文献求助10
5秒前
felix完成签到,获得积分10
5秒前
汉堡包应助111采纳,获得10
5秒前
5秒前
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得70
5秒前
6秒前
优美紫槐应助科研通管家采纳,获得10
6秒前
6秒前
Naomi发布了新的文献求助10
6秒前
萝卜应助科研通管家采纳,获得10
6秒前
壮观雅容完成签到,获得积分20
6秒前
6秒前
6秒前
6秒前
hhl完成签到,获得积分10
6秒前
6秒前
小流星完成签到,获得积分10
6秒前
6秒前
萝卜应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759899
求助须知:如何正确求助?哪些是违规求助? 5522591
关于积分的说明 15395720
捐赠科研通 4896858
什么是DOI,文献DOI怎么找? 2633939
邀请新用户注册赠送积分活动 1581980
关于科研通互助平台的介绍 1537467