Combining Bismuth nanoclusters embedded 3D carbon nanofiber Aerogels: Towards fast and ultra-durable faradic capacitive deionization

海水淡化 材料科学 电容去离子 阳极 纳米技术 化学工程 碳纤维 纳米结构 电极 复合材料 化学 冶金 物理化学 工程类 复合数 生物化学
作者
Ziping Wang,Zixin Guo,Qianhui Ma,Genzhe Shen,Bo Xiao,Lingyu Zhang,Qiang Li,Yong Liu,Xun Yuan
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:482: 149028-149028 被引量:11
标识
DOI:10.1016/j.cej.2024.149028
摘要

Faradic-based capacitive deionization (FDI) has been recognized as one of the most promising technologies to solve the freshwater crisis, yet was hindered mostly by the relatively low desalination rate and sluggish long-term stability of its anode materials. Through careful analysis, the origin of the slow desalination rate was determined to be the faradic diffusion and mass transfer, while the poor cycling stability could be originated from the volumetric expansion of the redox-active material as well as structural damage caused by the uneven stress during multicycle operation. Herein, we developed a Bi nanocluster (NCs) embedded in carbon nanofiber aerogels (Bi NCs@CNFAs) nanostructure as chloride-capturing electrodes for FDI. The essence of this work lies in the design of the "multi-layer protection" shell that could not only limit the volumetric expansion of the Bi NCs (inner protection layer) but also alleviate the stress caused by potential structure changes (outer buffer layer). As a result, the Bi NCs@CNFAs-based FDI display ultra-fast desalination kinetics (0.524 mg g−1 s−1) with remarkable long-term stability (only 8 % reduction over 250 cycles), significantly outperformed the highest value reported in the literature so far. This study is interesting because it exemplifies the significance of problem-driven strategy (nanocluster-induced surface-driven capacitance to address slow desalination kinetics; rigid carbon shell to suppress the volumetric expansion of Bi NCs; CNFAs scaffold to address potential structural damage and aggregation) to improve the desalination performance of FDI, which could further motivate advancements of highly effective desalination systems in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Qiu完成签到,获得积分10
1秒前
2秒前
3秒前
常健完成签到,获得积分10
4秒前
4秒前
oasis完成签到,获得积分10
4秒前
soon完成签到,获得积分10
4秒前
yoyo发布了新的文献求助10
5秒前
wheat完成签到,获得积分10
6秒前
6秒前
dddyrrrrr完成签到 ,获得积分10
7秒前
7秒前
cobo发布了新的文献求助10
7秒前
sq应助CLZ采纳,获得10
8秒前
小金今天自律了吗完成签到,获得积分10
9秒前
9秒前
Hot给Hot的求助进行了留言
10秒前
David完成签到,获得积分10
10秒前
jiangjiang发布了新的文献求助10
11秒前
嘎嘎嘎应助zy采纳,获得10
11秒前
浮游应助平常的仙人掌采纳,获得10
11秒前
典雅的俊驰完成签到,获得积分10
11秒前
venom应助小孟同学greta采纳,获得20
12秒前
fdx完成签到,获得积分10
12秒前
cobo完成签到,获得积分10
12秒前
不想做实验完成签到,获得积分10
13秒前
文献互助完成签到,获得积分10
13秒前
浮游应助Qiu采纳,获得10
14秒前
yyds发布了新的文献求助50
14秒前
小杜老师发布了新的文献求助10
15秒前
WWWUBING完成签到,获得积分10
15秒前
16秒前
17秒前
可乐不加冰完成签到,获得积分10
17秒前
17秒前
事竟成完成签到 ,获得积分10
18秒前
CipherSage应助liurh1114采纳,获得10
19秒前
19秒前
宗佳茹完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5109558
求助须知:如何正确求助?哪些是违规求助? 4318227
关于积分的说明 13453899
捐赠科研通 4148206
什么是DOI,文献DOI怎么找? 2273108
邀请新用户注册赠送积分活动 1275229
关于科研通互助平台的介绍 1213462