Immunoinformatics-aided rational design of a multi-epitope vaccine targeting feline infectious peritonitis virus

表位 猫传染性腹膜炎 病毒学 生物 抗原性 生物信息学 反向疫苗学 肽疫苗 Toll样受体 免疫系统 抗原 免疫学 先天免疫系统 医学 传染病(医学专业) 遗传学 疾病 2019年冠状病毒病(COVID-19) 病理 基因
作者
Mohit Chawla,Andrés Felipe Cuspoca,Nahid Akthar,Jorge Samuel Leon Magdaleno,Siriluk Rattanabunyong,Chonticha Suwattanasophon,Nathjanan Jongkon,Kiattawee Choowongkomon,Abdul Rajjak Shaikh,Tabarak Malik,Luigi Cavallo
出处
期刊:Frontiers in Veterinary Science 卷期号:10 被引量:10
标识
DOI:10.3389/fvets.2023.1280273
摘要

Feline infectious peritonitis (FIP) is a grave and frequently lethal ailment instigated by feline coronavirus (FCoV) in wild and domestic feline species. The spike (S) protein of FCoV assumes a critical function in viral ingress and infection, thereby presenting a promising avenue for the development of a vaccine. In this investigation, an immunoinformatics approach was employed to ascertain immunogenic epitopes within the S-protein of FIP and formulate an innovative vaccine candidate. By subjecting the amino acid sequence of the FIP S-protein to computational scrutiny, MHC-I binding T-cell epitopes were predicted, which were subsequently evaluated for their antigenicity, toxicity, and allergenicity through in silico tools. Our analyses yielded the identification of 11 potential epitopes capable of provoking a robust immune response against FIPV. Additionally, molecular docking analysis demonstrated the ability of these epitopes to bind with feline MHC class I molecules. Through the utilization of suitable linkers, these epitopes, along with adjuvants, were integrated to design a multi-epitope vaccine candidate. Furthermore, the stability of the interaction between the vaccine candidate and feline Toll-like receptor 4 (TLR4) was established via molecular docking and molecular dynamics simulation analyses. This suggests good prospects for future experimental validation to ascertain the efficacy of our vaccine candidate in inducing a protective immune response against FIP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
欢喜烧鹅完成签到,获得积分10
2秒前
sam应助玉龙采纳,获得30
3秒前
3秒前
3秒前
雅鹿贝鲁完成签到,获得积分10
4秒前
传奇3应助111采纳,获得10
4秒前
方越完成签到,获得积分10
5秒前
5秒前
星辰大海应助杨66采纳,获得10
5秒前
5秒前
伶俜完成签到,获得积分10
6秒前
万能图书馆应助DDDD源采纳,获得10
6秒前
科研通AI5应助JONG采纳,获得30
6秒前
Song发布了新的文献求助10
7秒前
10秒前
上官若男应助滴滴哒哒采纳,获得10
10秒前
10秒前
11秒前
12秒前
13秒前
快乐人达关注了科研通微信公众号
13秒前
伶俜发布了新的文献求助30
14秒前
阳光的羊完成签到,获得积分10
14秒前
pierce发布了新的文献求助10
15秒前
Xin完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
zhoucanshang完成签到,获得积分10
16秒前
曹曹完成签到,获得积分10
18秒前
木可发布了新的文献求助10
18秒前
19秒前
ltr2014发布了新的文献求助10
20秒前
orixero应助科研通管家采纳,获得10
20秒前
俏皮丸子应助科研通管家采纳,获得30
20秒前
kingwill应助科研通管家采纳,获得20
20秒前
完美世界应助科研通管家采纳,获得10
20秒前
21秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476698
求助须知:如何正确求助?哪些是违规求助? 3068270
关于积分的说明 9107322
捐赠科研通 2759775
什么是DOI,文献DOI怎么找? 1514279
邀请新用户注册赠送积分活动 700142
科研通“疑难数据库(出版商)”最低求助积分说明 699329