Node Significance Analysis in Complex Networks using Machine Learning and Centrality Measures

中心性 计算机科学 节点(物理) 人工智能 聚类分析 聚类系数 机器学习 抓住 复杂网络 数据挖掘 支持向量机 结构工程 数学 组合数学 工程类 万维网 程序设计语言
作者
Koduru Hajarathaiah,Murali Krishna Enduri,Satish Anamalamudi,Ashu Abdul,Jenhui Chen
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 10186-10201 被引量:5
标识
DOI:10.1109/access.2024.3355096
摘要

The study addresses the limitations of traditional centrality measures in complex networks, especially in disease-spreading situations, due to their inability to fully grasp the intricate connection between a node's functional importance and structural attributes.To tackle this issue, the research introduces an innovative framework that employs machine learning techniques to evaluate the significance of nodes in transmission scenarios.This framework incorporates various centrality measures like degree, clustering coefficient, Katz, local relative change in average clustering coefficient, average Katz, and average degree (LRACC, LRAK, and LRAD) to create a feature vector for each node.These methods capture diverse topological structures of nodes and incorporate the infection rate, a critical factor in understanding propagation scenarios.To establish accurate labels for node significance, propagation tests are simulated using epidemic models (SIR and Independent Cascade models).Machine learning methods are employed to capture the complex relationship between a node's true spreadability and infection rate.The performance of the machine learning model is compared to traditional centrality methods in two scenarios.In the first scenario, training and testing data are sourced from the same network, highlighting the superior accuracy of the machine learning approach.In the second scenario, training data from one network and testing data from another are used, where LRACC, LRAK, and LRAD outperform the machine learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
路漫漫123完成签到,获得积分10
1秒前
2秒前
Echo完成签到,获得积分10
2秒前
饼饼完成签到,获得积分10
2秒前
evilbatuu发布了新的文献求助10
3秒前
wyx发布了新的文献求助10
3秒前
赘婿应助uu采纳,获得10
5秒前
迅速泽洋完成签到,获得积分10
6秒前
6秒前
qiqiqiqiqi完成签到 ,获得积分10
6秒前
罗氏集团发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
呼呼呼完成签到,获得积分10
10秒前
小蘑菇应助abtx314采纳,获得10
10秒前
10秒前
北风发布了新的文献求助10
10秒前
Lrangrang应助littleE采纳,获得50
12秒前
王唯任发布了新的文献求助30
12秒前
呼呼呼发布了新的文献求助10
13秒前
David完成签到 ,获得积分10
14秒前
欣喜石头发布了新的文献求助10
14秒前
可可完成签到,获得积分20
15秒前
15秒前
laochen发布了新的文献求助10
15秒前
lyj完成签到,获得积分20
16秒前
16秒前
evilbatuu完成签到,获得积分10
16秒前
可可发布了新的文献求助10
17秒前
pluto驳回了顾矜应助
17秒前
CipherSage应助典雅的俊驰采纳,获得10
17秒前
善学以致用应助蝌蚪采纳,获得30
18秒前
18秒前
传奇3应助hkh采纳,获得10
19秒前
20秒前
20秒前
李智点发布了新的文献求助10
21秒前
21秒前
21秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998480
求助须知:如何正确求助?哪些是违规求助? 3537993
关于积分的说明 11273002
捐赠科研通 3276991
什么是DOI,文献DOI怎么找? 1807228
邀请新用户注册赠送积分活动 883823
科研通“疑难数据库(出版商)”最低求助积分说明 810049