Node Significance Analysis in Complex Networks using Machine Learning and Centrality Measures

中心性 计算机科学 节点(物理) 人工智能 聚类分析 聚类系数 机器学习 抓住 复杂网络 数据挖掘 支持向量机 数学 结构工程 组合数学 万维网 工程类 程序设计语言
作者
Koduru Hajarathaiah,Murali Krishna Enduri,Satish Anamalamudi,Ashu Abdul,Jenhui Chen
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 10186-10201 被引量:5
标识
DOI:10.1109/access.2024.3355096
摘要

The study addresses the limitations of traditional centrality measures in complex networks, especially in disease-spreading situations, due to their inability to fully grasp the intricate connection between a node's functional importance and structural attributes.To tackle this issue, the research introduces an innovative framework that employs machine learning techniques to evaluate the significance of nodes in transmission scenarios.This framework incorporates various centrality measures like degree, clustering coefficient, Katz, local relative change in average clustering coefficient, average Katz, and average degree (LRACC, LRAK, and LRAD) to create a feature vector for each node.These methods capture diverse topological structures of nodes and incorporate the infection rate, a critical factor in understanding propagation scenarios.To establish accurate labels for node significance, propagation tests are simulated using epidemic models (SIR and Independent Cascade models).Machine learning methods are employed to capture the complex relationship between a node's true spreadability and infection rate.The performance of the machine learning model is compared to traditional centrality methods in two scenarios.In the first scenario, training and testing data are sourced from the same network, highlighting the superior accuracy of the machine learning approach.In the second scenario, training data from one network and testing data from another are used, where LRACC, LRAK, and LRAD outperform the machine learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
syfsyfsyf完成签到,获得积分20
刚刚
mumuaidafu发布了新的文献求助10
1秒前
1秒前
Alias完成签到,获得积分10
1秒前
1秒前
李爱国应助我是X哥采纳,获得10
2秒前
lu发布了新的文献求助10
2秒前
2秒前
syfsyfsyf发布了新的文献求助10
3秒前
隐形曼青应助cc采纳,获得10
4秒前
sc完成签到 ,获得积分10
4秒前
4秒前
王子娇发布了新的文献求助10
4秒前
黄春松关注了科研通微信公众号
4秒前
4秒前
popvich应助ZMO采纳,获得20
5秒前
Ava应助科研通管家采纳,获得30
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
丁浩伦应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
乐乐应助危机的碧菡采纳,获得10
7秒前
7秒前
7秒前
626完成签到,获得积分10
7秒前
慕青应助hui_L采纳,获得10
8秒前
天天快乐应助玛玛哈哈采纳,获得10
8秒前
仔仔发布了新的文献求助10
8秒前
希望天下0贩的0应助荔枝采纳,获得10
9秒前
9秒前
PAN发布了新的文献求助20
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576191
求助须知:如何正确求助?哪些是违规求助? 3995491
关于积分的说明 12369060
捐赠科研通 3669468
什么是DOI,文献DOI怎么找? 2022229
邀请新用户注册赠送积分活动 1056224
科研通“疑难数据库(出版商)”最低求助积分说明 943543