纳米团簇
材料科学
氧还原
航程(航空)
氧还原反应
氧气
还原(数学)
无机化学
纳米技术
化学工程
物理化学
有机化学
化学
复合材料
电化学
几何学
工程类
数学
电极
作者
Chen Liang,Han Xu,Tianyu Zhang,Bo Dong,Yaping Li,Zhongbin Zhuang,Aijuan Han,Junfeng Liu
标识
DOI:10.1002/aenm.202303935
摘要
Abstract Incorporating atom‐nanocluster interactions into Fe─N─C single‐atom catalysts (Fe‐SACs) represents a viable strategy for enhancing their oxygen reduction reaction (ORR) activity, however, further investigation is necessary to elucidate the underlying mechanism. Herein, Cu nanoclusters are incorporated into Fe‐SACs to realize markedly enhanced pH‐universal ORR performance and investigate the underlying mechanism. The rate‐determining step (RDS) investigation reveals that the existence of Cu nanoclusters does not alter the RDS of Fe─N─C despite their differences in acidic, neutral, or alkaline media but instead optimizes the electronic configuration of Fe─N─C and significantly promotes the RDS. The synergistic effect between the Fe single atoms and Cu nanoclusters significantly enhances the half‐wave potential by 45, 90, and 18 mV in the HClO 4 , PBS, and KOH electrolytes, respectively. The catalysts further demonstrate remarkable maximum power densities of 971.4, 94.9, and 234.7 mW cm −2 in H 2 /O 2 fuel cells, neutral Zn‐air batteries, and alkaline Zn‐air batteries, respectively.
科研通智能强力驱动
Strongly Powered by AbleSci AI