Hypergraph Isomorphism Computation

超图 核(代数) 同构(结晶学) 图同构 数学 顶点(图论) 图形核 计算机科学 理论计算机科学 算法 图形 核方法 组合数学 人工智能 支持向量机 多项式核 折线图 化学 晶体结构 结晶学
作者
Yifan Feng,Jiashu Han,Shihui Ying,Yue Gao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (5): 3880-3896 被引量:4
标识
DOI:10.1109/tpami.2024.3353199
摘要

The isomorphism problem, crucial in network analysis, involves analyzing both low-order and high-order structural information. Graph isomorphism algorithms focus on structural equivalence to simplify solver space, aiding applications like protein design, chemical pathways, and community detection. However, they fall short in capturing complex high-order relationships, unlike hypergraph isomorphism methods. Traditional hypergraph methods face challenges like high memory use and inaccurate identification, leading to poor performance. To overcome these, we introduce a hypergraph Weisfeiler-Lehman (WL) test algorithm, extending the WL test from graphs to hypergraphs, and develop a hypergraph WL kernel framework with two variants: the Hypergraph WL Subtree Kernel and Hypergraph WL Hyperedge Kernel. The Hypergraph WL Subtree Kernel counts different types of rooted subtrees and generates the final feature vector for a given hypergraph by comparing the number of different types of rooted subtrees. The Subtree Kernel identifies different rooted subtrees, while the Hyperedge Kernel focuses on hyperedges' vertex labels, enhancing feature vector generation. In order to fulfill our research objectives, a comprehensive set of experiments was meticulously designed, including seven graph classification datasets and 12 hypergraph classification datasets. Results on graph classification datasets indicate that the Hypergraph WL Subtree Kernel can achieve the same performance compared with the classical Graph Weisfeiler-Lehman Subtree Kernel. Results on hypergraph classification datasets show significant improvements compared to other typical kernel-based methods, which demonstrates the effectiveness of the proposed methods. In our evaluation, our proposed methods outperform the second-best method in terms of runtime, running over 80 times faster when handling complex hypergraph structures. This significant speed advantage highlights the great potential of our methods in real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快哒哒哒发布了新的文献求助10
3秒前
希望天下0贩的0应助ddd采纳,获得10
3秒前
4秒前
4秒前
6秒前
dddd完成签到,获得积分10
6秒前
芝士拌麦粒完成签到,获得积分10
7秒前
8秒前
OvO发布了新的文献求助10
9秒前
陌上花开发布了新的文献求助10
10秒前
zywii完成签到,获得积分10
11秒前
13秒前
头发乱了发布了新的文献求助10
14秒前
14秒前
清隆完成签到,获得积分10
14秒前
ljhong1116应助鳗鱼厉采纳,获得60
18秒前
狂野世立发布了新的文献求助10
18秒前
英姑应助井中月采纳,获得10
19秒前
19秒前
科目三应助头发乱了采纳,获得30
23秒前
24秒前
ee发布了新的文献求助10
24秒前
荀语山完成签到,获得积分10
25秒前
顾矜应助muyangsiyuan采纳,获得10
25秒前
so000应助科研通管家采纳,获得10
26秒前
26秒前
在水一方应助王哪跑12采纳,获得10
26秒前
田様应助科研通管家采纳,获得10
26秒前
大模型应助科研通管家采纳,获得10
26秒前
无花果应助科研通管家采纳,获得10
26秒前
Jasper应助科研通管家采纳,获得10
26秒前
小彭友应助科研通管家采纳,获得10
27秒前
wanci应助科研通管家采纳,获得10
27秒前
彭于晏应助科研通管家采纳,获得30
27秒前
kingwill应助科研通管家采纳,获得20
27秒前
思源应助科研通管家采纳,获得10
27秒前
Hello应助科研通管家采纳,获得30
27秒前
隐形曼青应助科研通管家采纳,获得10
27秒前
最专业发布了新的文献求助10
27秒前
Ava应助科研通管家采纳,获得10
27秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462763
求助须知:如何正确求助?哪些是违规求助? 3056257
关于积分的说明 9051348
捐赠科研通 2745940
什么是DOI,文献DOI怎么找? 1506717
科研通“疑难数据库(出版商)”最低求助积分说明 696194
邀请新用户注册赠送积分活动 695720