A stable diffusion enhanced YOLOV5 model for metal stamped part defect detection based on improved network structure

冲压 材料科学 扩散 计算机科学 水准点(测量) 人工智能 特征(语言学) 机制(生物学) 图像(数学) 哲学 物理 大地测量学 认识论 冶金 热力学 地理 语言学
作者
Yiyi Liang,Sang Feng,Yuxun Zhang,Fei Xue,Fanghua Shen,Jianwen Guo
出处
期刊:Journal of Manufacturing Processes [Elsevier]
卷期号:111: 21-31 被引量:7
标识
DOI:10.1016/j.jmapro.2023.12.064
摘要

Machine-vision-based defect detection for large metal stamping is a fundamental requirement for improving product quality and inspection speed. However, the performance of machine vision in detecting defects is limited by the large variety of stamped products, significant dimensional differences, and long data-acquisition cycles. To overcome these problems, metal stamping detection has been achieved using the improved YOLOV5 model, which features a slim neck and a multiheaded self-attentive mechanism for detecting wrinkles, holes, and cracks in metal stamping. An image-processing module was used to reduce the impact of metal reflections and improve image quality. Stable diffusion improvement was used to augment the dataset to overcome the small dataset size problem and enhance its generalisation capability. In addition, a BotNet structure with a self-attentive mechanism was introduced into the YOLOV5 model backbone to improve the image feature extraction capability. We then optimised the prediction head structure of YOLOV5 to improve the detection speed and accuracy. Ablation experiments were performed to analyse and verify the effectiveness of each module. The results of the ablation experiments show that the mAP of our proposed stable diffusion improvement data enhancement method, and the YOLO-Bot-VOV algorithm, for metal stamped part defect detection reached 98.2 %, and the parameters were reduced by 0.432 million.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助木四点采纳,获得10
刚刚
嗖嗖发布了新的文献求助10
1秒前
3秒前
4秒前
传奇3应助快乐的凡霜采纳,获得10
4秒前
爱吃麻辣烫应助光亮友安采纳,获得10
5秒前
5秒前
7秒前
8秒前
momo完成签到,获得积分20
9秒前
似水流年完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
你不刷牙发布了新的文献求助10
10秒前
momo发布了新的文献求助10
11秒前
康康发布了新的文献求助10
13秒前
14秒前
长发飘飘完成签到 ,获得积分10
14秒前
谨慎忆安发布了新的文献求助10
14秒前
水牛应助Nuyoah采纳,获得10
15秒前
15秒前
缚大哥发布了新的文献求助10
16秒前
子车茗应助111版采纳,获得10
17秒前
18秒前
春和景明完成签到,获得积分10
18秒前
19秒前
19秒前
19秒前
20秒前
长发飘飘关注了科研通微信公众号
20秒前
20秒前
21秒前
大模型应助科研通管家采纳,获得10
21秒前
小蘑菇应助科研通管家采纳,获得10
21秒前
华仔应助科研通管家采纳,获得10
21秒前
JamesPei应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
思源应助科研通管家采纳,获得10
21秒前
酷波er应助科研通管家采纳,获得10
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149519
求助须知:如何正确求助?哪些是违规求助? 2800571
关于积分的说明 7840676
捐赠科研通 2458112
什么是DOI,文献DOI怎么找? 1308279
科研通“疑难数据库(出版商)”最低求助积分说明 628471
版权声明 601706