Quantitative analysis of near infrared spectroscopic data based on dual-band transformation and competitive adaptive reweighted sampling

人工智能 近红外光谱 计算机科学 转化(遗传学) 理论(学习稳定性) 相关系数 采样(信号处理) 模式识别(心理学) 蒙特卡罗方法 机器学习 数学 计算机视觉 统计 化学 光学 物理 基因 滤波器(信号处理) 生物化学
作者
Yiming Li,Xinwu Yang,Yiming Li,Xinwu Yang
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:285: 121924-121924 被引量:52
标识
DOI:10.1016/j.saa.2022.121924
摘要

Near infrared (NIR) spectroscopy has the characteristics of rapid processing, nondestructive analysis and on-line detection. This technique has been widely used in the fields of quantitative determination and substance content analysis. However, for complex NIR spectral data, most traditional machine learning models cannot carry out effective quantitative analyses (manifested as underfitting; that is, the training effect of the model is not good). Small amounts of available data limit the performance of deep learning-based infrared spectroscopy methods, while the traditional threshold-based feature selection methods require more prior knowledge. To address the above problems, this paper proposes a competitive adaptive reweighted sampling method based on dual band transformation (DWT-CARS). DWT-CARS includes four types in total: CARS based on integrated two-dimensional correlation spectrum (i2DCOS-CARS), CARS based on difference coefficient (DI-CARS), CARS based on ratio coefficient (RI-CARS) and CARS based on normalized difference coefficient (NDI-CARS). We conducted comparative experiments on three datasets; compared to traditional machine learning methods, our method achieved good results, demonstrating that this method has considerable prospects for the quantitative analysis of near-infrared spectroscopic data. To further improve the performance and stability of this method, we combined the idea of integrated modeling and constructed a partial least squares model based on Monte Carlo sampling for the samples obtained by CARS (DWT-CARS-MC-PLS). Through comparative experiments, we verified that the integrated model could further enhance the accuracy and stability of the results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大个应助ldd采纳,获得10
1秒前
J_Man发布了新的文献求助10
1秒前
白菜完成签到,获得积分10
1秒前
MAC7完成签到,获得积分10
4秒前
枫原万叶发布了新的文献求助10
4秒前
lixm完成签到,获得积分10
4秒前
yayisheng关注了科研通微信公众号
4秒前
乐乐完成签到,获得积分10
5秒前
刘丰铭发布了新的文献求助10
5秒前
无极微光应助合适的芸遥采纳,获得20
6秒前
7秒前
小马牙牙发布了新的文献求助10
7秒前
yayisheng关注了科研通微信公众号
8秒前
甜甜灵槐完成签到 ,获得积分10
8秒前
9秒前
在水一方应助莫羽倾尘采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
王梦如发布了新的文献求助10
11秒前
许峰完成签到,获得积分10
11秒前
11秒前
我也会吃饭完成签到,获得积分10
11秒前
12秒前
12秒前
13秒前
滴歪歪发布了新的文献求助10
14秒前
14秒前
科研通AI6应助esdeath采纳,获得10
15秒前
15秒前
15秒前
FashionBoy应助帅帅哈采纳,获得10
16秒前
16秒前
小马牙牙完成签到,获得积分10
16秒前
16秒前
一二发布了新的文献求助10
17秒前
17秒前
18秒前
枫原万叶完成签到,获得积分10
18秒前
田様应助莫羽倾尘采纳,获得10
18秒前
852应助刘文辉采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610029
求助须知:如何正确求助?哪些是违规求助? 4694550
关于积分的说明 14882989
捐赠科研通 4720934
什么是DOI,文献DOI怎么找? 2544990
邀请新用户注册赠送积分活动 1509848
关于科研通互助平台的介绍 1473013