已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Quantitative analysis of near infrared spectroscopic data based on dual-band transformation and competitive adaptive reweighted sampling

人工智能 近红外光谱 计算机科学 转化(遗传学) 理论(学习稳定性) 相关系数 采样(信号处理) 模式识别(心理学) 蒙特卡罗方法 机器学习 数学 计算机视觉 统计 化学 光学 物理 基因 滤波器(信号处理) 生物化学
作者
Yiming Li,Xinwu Yang,Yiming Li,Xinwu Yang
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:285: 121924-121924 被引量:52
标识
DOI:10.1016/j.saa.2022.121924
摘要

Near infrared (NIR) spectroscopy has the characteristics of rapid processing, nondestructive analysis and on-line detection. This technique has been widely used in the fields of quantitative determination and substance content analysis. However, for complex NIR spectral data, most traditional machine learning models cannot carry out effective quantitative analyses (manifested as underfitting; that is, the training effect of the model is not good). Small amounts of available data limit the performance of deep learning-based infrared spectroscopy methods, while the traditional threshold-based feature selection methods require more prior knowledge. To address the above problems, this paper proposes a competitive adaptive reweighted sampling method based on dual band transformation (DWT-CARS). DWT-CARS includes four types in total: CARS based on integrated two-dimensional correlation spectrum (i2DCOS-CARS), CARS based on difference coefficient (DI-CARS), CARS based on ratio coefficient (RI-CARS) and CARS based on normalized difference coefficient (NDI-CARS). We conducted comparative experiments on three datasets; compared to traditional machine learning methods, our method achieved good results, demonstrating that this method has considerable prospects for the quantitative analysis of near-infrared spectroscopic data. To further improve the performance and stability of this method, we combined the idea of integrated modeling and constructed a partial least squares model based on Monte Carlo sampling for the samples obtained by CARS (DWT-CARS-MC-PLS). Through comparative experiments, we verified that the integrated model could further enhance the accuracy and stability of the results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魔丸学医完成签到,获得积分10
刚刚
冷静雨南完成签到 ,获得积分10
1秒前
2秒前
4秒前
5秒前
meow完成签到 ,获得积分10
5秒前
时尚的芹发布了新的文献求助10
7秒前
8秒前
8秒前
无私平彤完成签到,获得积分10
8秒前
bai发布了新的文献求助10
9秒前
一一发布了新的文献求助10
9秒前
pure完成签到 ,获得积分10
10秒前
反季发布了新的文献求助10
10秒前
xkai关注了科研通微信公众号
11秒前
11秒前
喜悦发布了新的文献求助10
12秒前
3sigma发布了新的文献求助10
13秒前
13秒前
时尚的芹完成签到,获得积分10
13秒前
14秒前
甜蜜邑完成签到 ,获得积分10
16秒前
wsb76发布了新的文献求助10
16秒前
Lucas应助木子采纳,获得10
17秒前
沉静的万天完成签到 ,获得积分10
19秒前
小小发布了新的文献求助10
19秒前
20秒前
Leffzeng发布了新的文献求助10
21秒前
24秒前
长安完成签到 ,获得积分10
24秒前
北极星发布了新的文献求助30
25秒前
李爱国应助Danielwill采纳,获得10
26秒前
CipherSage应助xiyang采纳,获得10
27秒前
28秒前
29秒前
30秒前
难过的念桃完成签到 ,获得积分10
32秒前
好久不见完成签到 ,获得积分10
33秒前
欢呼败发布了新的文献求助10
34秒前
jjyy发布了新的文献求助10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573086
求助须知:如何正确求助?哪些是违规求助? 4659218
关于积分的说明 14724003
捐赠科研通 4599058
什么是DOI,文献DOI怎么找? 2524103
邀请新用户注册赠送积分活动 1494642
关于科研通互助平台的介绍 1464679