已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Quantitative analysis of near infrared spectroscopic data based on dual-band transformation and competitive adaptive reweighted sampling

人工智能 近红外光谱 计算机科学 转化(遗传学) 理论(学习稳定性) 相关系数 采样(信号处理) 模式识别(心理学) 蒙特卡罗方法 机器学习 数学 计算机视觉 统计 化学 光学 物理 基因 滤波器(信号处理) 生物化学
作者
Yiming Li,Xinwu Yang
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:285: 121924-121924 被引量:29
标识
DOI:10.1016/j.saa.2022.121924
摘要

Near infrared (NIR) spectroscopy has the characteristics of rapid processing, nondestructive analysis and on-line detection. This technique has been widely used in the fields of quantitative determination and substance content analysis. However, for complex NIR spectral data, most traditional machine learning models cannot carry out effective quantitative analyses (manifested as underfitting; that is, the training effect of the model is not good). Small amounts of available data limit the performance of deep learning-based infrared spectroscopy methods, while the traditional threshold-based feature selection methods require more prior knowledge. To address the above problems, this paper proposes a competitive adaptive reweighted sampling method based on dual band transformation (DWT-CARS). DWT-CARS includes four types in total: CARS based on integrated two-dimensional correlation spectrum (i2DCOS-CARS), CARS based on difference coefficient (DI-CARS), CARS based on ratio coefficient (RI-CARS) and CARS based on normalized difference coefficient (NDI-CARS). We conducted comparative experiments on three datasets; compared to traditional machine learning methods, our method achieved good results, demonstrating that this method has considerable prospects for the quantitative analysis of near-infrared spectroscopic data. To further improve the performance and stability of this method, we combined the idea of integrated modeling and constructed a partial least squares model based on Monte Carlo sampling for the samples obtained by CARS (DWT-CARS-MC-PLS). Through comparative experiments, we verified that the integrated model could further enhance the accuracy and stability of the results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
azhen发布了新的文献求助10
2秒前
3秒前
Owen应助自由的氧化铝采纳,获得10
3秒前
3秒前
brk发布了新的文献求助10
4秒前
5秒前
糊涂塌客完成签到,获得积分10
6秒前
丘比特应助azhen采纳,获得10
8秒前
再干一杯发布了新的文献求助10
9秒前
小怪兽kk发布了新的文献求助10
10秒前
王艺霖发布了新的文献求助10
13秒前
15秒前
15秒前
17秒前
科研通AI5应助Ruoru采纳,获得10
17秒前
white完成签到 ,获得积分10
18秒前
piupiu完成签到,获得积分10
18秒前
brk完成签到,获得积分10
18秒前
Dr.zhang发布了新的文献求助10
20秒前
深情凡灵发布了新的文献求助10
22秒前
Taro发布了新的文献求助10
22秒前
隐形曼青应助lalalala采纳,获得10
23秒前
科目三应助再干一杯采纳,获得10
23秒前
孙东玥完成签到 ,获得积分10
24秒前
26秒前
落后钢铁侠完成签到 ,获得积分10
26秒前
Dr.zhang完成签到,获得积分20
28秒前
lluuoo完成签到,获得积分10
30秒前
31秒前
31秒前
咩吖完成签到 ,获得积分10
32秒前
鼻揩了转去应助HHH采纳,获得10
32秒前
贺可乐发布了新的文献求助30
32秒前
隐形曼青应助金博洋采纳,获得13
34秒前
jiangzong应助zxzxzx采纳,获得20
35秒前
打打应助小怪兽kk采纳,获得10
37秒前
小小铱发布了新的文献求助10
38秒前
43秒前
l1844852731完成签到 ,获得积分10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5090007
求助须知:如何正确求助?哪些是违规求助? 4304665
关于积分的说明 13414601
捐赠科研通 4130315
什么是DOI,文献DOI怎么找? 2262199
邀请新用户注册赠送积分活动 1266136
关于科研通互助平台的介绍 1200822