Quantitative analysis of near infrared spectroscopic data based on dual-band transformation and competitive adaptive reweighted sampling

人工智能 近红外光谱 计算机科学 转化(遗传学) 理论(学习稳定性) 相关系数 采样(信号处理) 模式识别(心理学) 蒙特卡罗方法 机器学习 数学 计算机视觉 统计 化学 光学 物理 基因 滤波器(信号处理) 生物化学
作者
Yiming Li,Xinwu Yang
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:285: 121924-121924 被引量:26
标识
DOI:10.1016/j.saa.2022.121924
摘要

Near infrared (NIR) spectroscopy has the characteristics of rapid processing, nondestructive analysis and on-line detection. This technique has been widely used in the fields of quantitative determination and substance content analysis. However, for complex NIR spectral data, most traditional machine learning models cannot carry out effective quantitative analyses (manifested as underfitting; that is, the training effect of the model is not good). Small amounts of available data limit the performance of deep learning-based infrared spectroscopy methods, while the traditional threshold-based feature selection methods require more prior knowledge. To address the above problems, this paper proposes a competitive adaptive reweighted sampling method based on dual band transformation (DWT-CARS). DWT-CARS includes four types in total: CARS based on integrated two-dimensional correlation spectrum (i2DCOS-CARS), CARS based on difference coefficient (DI-CARS), CARS based on ratio coefficient (RI-CARS) and CARS based on normalized difference coefficient (NDI-CARS). We conducted comparative experiments on three datasets; compared to traditional machine learning methods, our method achieved good results, demonstrating that this method has considerable prospects for the quantitative analysis of near-infrared spectroscopic data. To further improve the performance and stability of this method, we combined the idea of integrated modeling and constructed a partial least squares model based on Monte Carlo sampling for the samples obtained by CARS (DWT-CARS-MC-PLS). Through comparative experiments, we verified that the integrated model could further enhance the accuracy and stability of the results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
情怀应助Michelle采纳,获得10
3秒前
激情的一斩完成签到,获得积分20
3秒前
平芜尽处发布了新的文献求助10
3秒前
weddcf发布了新的文献求助10
5秒前
5秒前
6秒前
zchao0401完成签到,获得积分10
7秒前
8秒前
文艺鞋垫完成签到,获得积分10
8秒前
哭泣鼠标发布了新的文献求助10
8秒前
个性的紫菜应助小周采纳,获得10
8秒前
大意的饼干完成签到,获得积分10
8秒前
mqq发布了新的文献求助10
9秒前
lienne完成签到,获得积分10
10秒前
sci完成签到,获得积分10
10秒前
glassyskyzl完成签到,获得积分20
12秒前
12秒前
13秒前
liubaogang发布了新的文献求助10
14秒前
常白易完成签到,获得积分10
15秒前
科研通AI2S应助whuhustwit采纳,获得10
15秒前
田静然发布了新的文献求助10
16秒前
缓慢的天蓉完成签到 ,获得积分10
16秒前
努力发布了新的文献求助10
17秒前
1820801018完成签到,获得积分10
17秒前
Youth发布了新的文献求助10
18秒前
18秒前
Debbieee完成签到,获得积分10
18秒前
大模型应助jin采纳,获得10
19秒前
辣个男子完成签到,获得积分10
19秒前
缓慢的天蓉关注了科研通微信公众号
20秒前
小高完成签到,获得积分10
22秒前
22秒前
小白完成签到,获得积分10
24秒前
之后再说咯完成签到,获得积分10
25秒前
精明的盼雁关注了科研通微信公众号
27秒前
hanlinhong发布了新的文献求助10
27秒前
深情安青应助远道采纳,获得10
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145470
求助须知:如何正确求助?哪些是违规求助? 2796872
关于积分的说明 7821855
捐赠科研通 2453171
什么是DOI,文献DOI怎么找? 1305478
科研通“疑难数据库(出版商)”最低求助积分说明 627487
版权声明 601464