Quantitative analysis of near infrared spectroscopic data based on dual-band transformation and competitive adaptive reweighted sampling

人工智能 近红外光谱 计算机科学 转化(遗传学) 理论(学习稳定性) 相关系数 采样(信号处理) 模式识别(心理学) 蒙特卡罗方法 机器学习 数学 计算机视觉 统计 化学 光学 物理 基因 滤波器(信号处理) 生物化学
作者
Yiming Li,Xinwu Yang,Yiming Li,Xinwu Yang
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:285: 121924-121924 被引量:52
标识
DOI:10.1016/j.saa.2022.121924
摘要

Near infrared (NIR) spectroscopy has the characteristics of rapid processing, nondestructive analysis and on-line detection. This technique has been widely used in the fields of quantitative determination and substance content analysis. However, for complex NIR spectral data, most traditional machine learning models cannot carry out effective quantitative analyses (manifested as underfitting; that is, the training effect of the model is not good). Small amounts of available data limit the performance of deep learning-based infrared spectroscopy methods, while the traditional threshold-based feature selection methods require more prior knowledge. To address the above problems, this paper proposes a competitive adaptive reweighted sampling method based on dual band transformation (DWT-CARS). DWT-CARS includes four types in total: CARS based on integrated two-dimensional correlation spectrum (i2DCOS-CARS), CARS based on difference coefficient (DI-CARS), CARS based on ratio coefficient (RI-CARS) and CARS based on normalized difference coefficient (NDI-CARS). We conducted comparative experiments on three datasets; compared to traditional machine learning methods, our method achieved good results, demonstrating that this method has considerable prospects for the quantitative analysis of near-infrared spectroscopic data. To further improve the performance and stability of this method, we combined the idea of integrated modeling and constructed a partial least squares model based on Monte Carlo sampling for the samples obtained by CARS (DWT-CARS-MC-PLS). Through comparative experiments, we verified that the integrated model could further enhance the accuracy and stability of the results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
魏大宝发布了新的文献求助10
刚刚
刚刚
赘婿应助xu采纳,获得10
刚刚
刚刚
清淮完成签到,获得积分10
1秒前
研友_8yNdOL完成签到,获得积分10
1秒前
1秒前
JamesPei应助顺顺顺采纳,获得10
1秒前
1秒前
郑浩龙完成签到,获得积分10
2秒前
2秒前
Genius发布了新的文献求助10
2秒前
3秒前
曲聋五发布了新的文献求助30
3秒前
guoguoguo完成签到,获得积分10
4秒前
4秒前
斯文败类应助tangz采纳,获得10
4秒前
科研通AI6应助上岸采纳,获得10
5秒前
苏紫梗桔发布了新的文献求助10
5秒前
香蕉觅云应助自由南珍采纳,获得10
5秒前
111发布了新的文献求助10
6秒前
able发布了新的文献求助10
6秒前
zho发布了新的文献求助10
6秒前
6秒前
研友_VZG7GZ应助ww采纳,获得10
6秒前
6秒前
7秒前
传奇3应助鲜艳的以寒采纳,获得10
7秒前
7秒前
隐形曼青应助jackyale采纳,获得30
7秒前
雨晴完成签到,获得积分20
8秒前
柴鱼0625完成签到,获得积分20
8秒前
8秒前
8秒前
DQY发布了新的文献求助10
8秒前
大个应助LJX采纳,获得10
9秒前
Birdy发布了新的文献求助10
9秒前
9秒前
甜美修洁完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577111
求助须知:如何正确求助?哪些是违规求助? 4662375
关于积分的说明 14741491
捐赠科研通 4603039
什么是DOI,文献DOI怎么找? 2526066
邀请新用户注册赠送积分活动 1495999
关于科研通互助平台的介绍 1465483