材料科学
环氧乙烷
锂(药物)
电解质
聚合物电解质
固态
聚合物
聚乙烯
离子
氧化物
无机化学
快离子导体
化学工程
乙烯
离子电导率
有机化学
电极
物理化学
复合材料
共聚物
冶金
催化作用
化学
医学
工程类
内分泌学
作者
Ruirui Chang,Yingkang Liu,Yaguang Zhang,Yunyu Shi,Jingjing Tang,Zheng‐Long Xu,Xiangyang Zhou,Juan Yang
标识
DOI:10.1002/aenm.202405906
摘要
Abstract The high crystallinity of poly(ethylene oxide)‐based solid polymer electrolytes (PEO‐based SPEs) is viewed as a key barrier to their ambient‐temperature performance. Conventional approaches to mitigate crystallinity necessitate elevated operation temperatures of 50–60 °C. Interestingly, this work indicates that the predominant factor limiting ambient‐temperature performance is the robust coordination between lithium‐ion (Li + ) and ether oxygen (EO), rather than the crystallinity. By rationally tailoring the Li + concentration, this work effectively weakens the coordination strength, thereby enhancing the ambient‐temperature electrochemical performance. An optimal SPE with EO: Li ratio of 9:1 exhibits remarkable ionic conductivity (1.76 × 10 −4 S cm −1 at 35 °C), a high Li + transference number (0.486 at 35 °C), and superior adhesion to electrodes in compression‐free pouch cells. The practical feasibility of the SPE is demonstrated in solid‐state Li‐LiFePO 4 cells achieving a specific capacity of 149.66 mAh g −1 at 0.1 C and 35 °C and 90.5% capacity retention over 100 cycles. The electrolyte also exhibits compatibility with high‐voltage cathodes of LiNi 0.6 Co 0.2 Mn 0.2 O 2 and LiNi 0.8 Co 0.1 Mn 0.1 O 2 for high‐energy Li‐metal batteries. These new insights shed light on the rational regulation of SPEs in advanced solid‐state batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI