上睑下垂
炎症体
氧化苦参碱
NF-κB
足细胞
化学
药理学
信号转导
医学
细胞生物学
炎症
内科学
生物
生物化学
肾
蛋白尿
作者
Hong Ouyang,Dandan Chen,Wei Liu
标识
DOI:10.18502/ijaai.v24i2.18148
摘要
Diabetic nephropathy is a microvascular complication that leads to renal injury. Oxymatrine (OMT) is a matrine alkaloid and has been shown to ameliorate diabetic nephropathy. However, it is still unknown whether its mechanism involves podocytes, which play a critical role in diabetic nephropathy. High glucose-induced podocytes (MPC5) were treated with OMT, the NOD-like receptor protein 3 (NLRP3) inhibitor MCC950, and the sirtuin 1 (SIRT1) inhibitor EX527. The effects on podocyte proliferation and apoptosis were assessed using cell counting kit-8 and flow cytometry. Immunofluorescence staining was performed to detect the expression of podocyte-associated proteins, NLRP3 inflammasome, and SIRT1. The levels of interleukin (IL)-1β and IL-18 were measured by enzyme-linked immunosorbent assay. Additionally, Western blot analysis was conducted to evaluate podocyte-related proteins, NLRP3 inflammasome-dependent pyroptosis-related proteins, and SIRT1/nuclear factor kappa B (NF-κB) pathway proteins, aiming to elucidate the mechanisms by which OMT improves podocyte injury. OMT significantly promoted the proliferation of podocytes exposed to high glucose, inhibited their apoptosis, increased the levels of nephrin, Wilms tumor 1, podocin, and zonula occludens-1, and reduced pyroptosis-related proteins, IL-1β, and IL-18 (p < 0.05). It also increased SIRT1 and decreased the acetylation of NF-κB p65 (p < 0.05). The NLRP3 inhibitor MCC950 reduced podocyte pyroptosis under high glucose conditions, while the SIRT1 inhibitor EX527 reversed the protective effects of OMT on NLRP3 inflammasome-dependent pyroptosis and podocyte injury. OMT ameliorates high glucose-induced podocyte injury by regulating the SIRT1/NF-κB pathway and inhibiting NLRP3 inflammasome-dependent pyroptosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI