Convolutional Neural Network to Detect the Optimal Water Content of Cassava Chips During the Drying Process

卷积神经网络 托盘 过程(计算) 人工神经网络 计算机科学 含水量 人工智能 深度学习 工艺工程 模式识别(心理学) 制浆造纸工业 工程类 机械工程 岩土工程 操作系统
作者
Yusuf Hendrawan,Bagas Rohmatulloh,Fardha Irfatul Ilmi,Muchammad Riza Fauzy,Retno Damayanti,Dimas Firmanda Al Riza,Mochamad Bagus Hermanto,Sandra Sandra
出处
期刊:International Journal on Advanced Science, Engineering and Information Technology [Insight Society]
卷期号:12 (5): 2112-2112
标识
DOI:10.18517/ijaseit.12.5.15895
摘要

Cassava chips are used as raw materials to manufacture modified cassava flour. To produce high-quality modified cassava flour, a drying process for cassava chips is required to produce optimal water content in the range of 15-18% wb. This study aims to detect the optimal water content of cassava chips during the drying process in a hybrid hot-air tray dryer with computer vision using a convolutional neural network. Three categories of cassava chips' water content during the drying process are wet (water content of 55-70% wb), semi-dry (20-40% wb), and optimal dry (15-18% wb). In this study, the performance of four types of the pre-trained convolutional neural network, i.e., AlexNet, GoogLeNet, ResNet-50, and SqueezeNet, were compared by using different optimizers (SGDm, Adam, and RMSProp) and different learning rate values, 0.00005 and 0.0001, resulting in 24 types of experimental design. The results showed 12 convolutional neural network models with perfect validation accuracy. AlexNet with the SGDm optimizer and learning rate of 0.00005 was determined as the best model because of its stable training iteration process that experienced no fluctuations, perfect validation accuracy, specifically 100%, as well as perfect testing accuracy was 100%, and fastest training and validation process time, notably 32 minutes. This best convolutional neural network model will later be used to develop a rapid, real-time, and accurate hybrid hot-air tray dryer with computer vision to maintain cassava chip products with optimal water content.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助迷路的初柔采纳,获得10
刚刚
Ahion发布了新的文献求助20
刚刚
刚刚
领导范儿应助丶丶采纳,获得10
刚刚
阿基米德发布了新的文献求助10
刚刚
Jau完成签到,获得积分0
刚刚
帅气的马里奥完成签到 ,获得积分10
1秒前
zzzwwwkkk完成签到,获得积分10
1秒前
aa发布了新的文献求助10
1秒前
dddd发布了新的文献求助10
1秒前
2秒前
赘婿应助璟晔采纳,获得10
2秒前
3秒前
liqin发布了新的文献求助10
3秒前
aaa完成签到,获得积分10
3秒前
3秒前
VAD123发布了新的文献求助20
4秒前
爱尚Coco完成签到,获得积分10
4秒前
小圆子完成签到,获得积分10
4秒前
4秒前
5秒前
DADing完成签到,获得积分20
5秒前
酷波er应助满意芯采纳,获得10
5秒前
兴奋的万声完成签到,获得积分10
5秒前
dddd完成签到,获得积分10
5秒前
王伟应助超级千青采纳,获得10
6秒前
ll应助超级千青采纳,获得10
6秒前
6秒前
鲤鱼鸽子应助djbj2022采纳,获得10
6秒前
水上书发布了新的文献求助10
7秒前
Panchael完成签到,获得积分10
7秒前
帅气的猫完成签到,获得积分10
7秒前
8秒前
单单来迟完成签到,获得积分10
9秒前
科研顺利完成签到,获得积分10
9秒前
angela完成签到,获得积分10
9秒前
日出发布了新的文献求助10
9秒前
外向的斑马完成签到 ,获得积分10
9秒前
热情蜜蜂发布了新的文献求助10
10秒前
善学以致用应助张学友采纳,获得10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969033
求助须知:如何正确求助?哪些是违规求助? 3513900
关于积分的说明 11170818
捐赠科研通 3249256
什么是DOI,文献DOI怎么找? 1794708
邀请新用户注册赠送积分活动 875326
科研通“疑难数据库(出版商)”最低求助积分说明 804759