Convolutional Neural Network to Detect the Optimal Water Content of Cassava Chips During the Drying Process

卷积神经网络 托盘 过程(计算) 人工神经网络 计算机科学 含水量 人工智能 深度学习 工艺工程 模式识别(心理学) 制浆造纸工业 工程类 机械工程 岩土工程 操作系统
作者
Yusuf Hendrawan,Bagas Rohmatulloh,Fardha Irfatul Ilmi,Muchammad Riza Fauzy,Retno Damayanti,Dimas Firmanda Al Riza,Mochamad Bagus Hermanto,Sandra Sandra
出处
期刊:International Journal on Advanced Science, Engineering and Information Technology [Insight Society]
卷期号:12 (5): 2112-2112
标识
DOI:10.18517/ijaseit.12.5.15895
摘要

Cassava chips are used as raw materials to manufacture modified cassava flour. To produce high-quality modified cassava flour, a drying process for cassava chips is required to produce optimal water content in the range of 15-18% wb. This study aims to detect the optimal water content of cassava chips during the drying process in a hybrid hot-air tray dryer with computer vision using a convolutional neural network. Three categories of cassava chips' water content during the drying process are wet (water content of 55-70% wb), semi-dry (20-40% wb), and optimal dry (15-18% wb). In this study, the performance of four types of the pre-trained convolutional neural network, i.e., AlexNet, GoogLeNet, ResNet-50, and SqueezeNet, were compared by using different optimizers (SGDm, Adam, and RMSProp) and different learning rate values, 0.00005 and 0.0001, resulting in 24 types of experimental design. The results showed 12 convolutional neural network models with perfect validation accuracy. AlexNet with the SGDm optimizer and learning rate of 0.00005 was determined as the best model because of its stable training iteration process that experienced no fluctuations, perfect validation accuracy, specifically 100%, as well as perfect testing accuracy was 100%, and fastest training and validation process time, notably 32 minutes. This best convolutional neural network model will later be used to develop a rapid, real-time, and accurate hybrid hot-air tray dryer with computer vision to maintain cassava chip products with optimal water content.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助ZHI采纳,获得10
2秒前
青山完成签到 ,获得积分10
3秒前
金黎发布了新的文献求助10
3秒前
欢呼靳完成签到 ,获得积分10
3秒前
机智的灵萱完成签到,获得积分10
3秒前
君衡完成签到 ,获得积分10
6秒前
微暖完成签到,获得积分0
10秒前
Xjx6519发布了新的文献求助10
11秒前
墨染完成签到,获得积分10
13秒前
23秒前
hh发布了新的文献求助10
27秒前
Prejudice3完成签到,获得积分10
28秒前
Jere发布了新的文献求助20
32秒前
金黎完成签到,获得积分20
35秒前
ICBC完成签到 ,获得积分10
36秒前
NexusExplorer应助天玄采纳,获得10
38秒前
科研通AI2S应助Solkatt采纳,获得10
38秒前
ccc完成签到,获得积分10
39秒前
wylwyl完成签到,获得积分10
45秒前
muky关注了科研通微信公众号
45秒前
Lucas应助通天塔采纳,获得80
45秒前
endoscopy发布了新的文献求助10
46秒前
48秒前
shhoing应助超级王国采纳,获得10
49秒前
Owen应助来杯冰美式采纳,获得10
53秒前
CipherSage应助卢志帅采纳,获得10
54秒前
Wiesen发布了新的文献求助10
57秒前
59秒前
星辰大海应助feiyang采纳,获得10
1分钟前
大方夏瑶关注了科研通微信公众号
1分钟前
通天塔发布了新的文献求助80
1分钟前
1分钟前
大个应助越明年采纳,获得10
1分钟前
乐乐应助WN采纳,获得10
1分钟前
marvinvin发布了新的文献求助10
1分钟前
shhoing应助超级王国采纳,获得10
1分钟前
1分钟前
Ninece完成签到 ,获得积分10
1分钟前
度ewf发布了新的文献求助10
1分钟前
超级王国完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557589
求助须知:如何正确求助?哪些是违规求助? 4642695
关于积分的说明 14668834
捐赠科研通 4584089
什么是DOI,文献DOI怎么找? 2514585
邀请新用户注册赠送积分活动 1488838
关于科研通互助平台的介绍 1459523