清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Convolutional Neural Network to Detect the Optimal Water Content of Cassava Chips During the Drying Process

卷积神经网络 托盘 过程(计算) 人工神经网络 计算机科学 含水量 人工智能 深度学习 工艺工程 模式识别(心理学) 制浆造纸工业 工程类 机械工程 岩土工程 操作系统
作者
Yusuf Hendrawan,Bagas Rohmatulloh,Fardha Irfatul Ilmi,Muchammad Riza Fauzy,Retno Damayanti,Dimas Firmanda Al Riza,Mochamad Bagus Hermanto,Sandra Sandra
出处
期刊:International Journal on Advanced Science, Engineering and Information Technology [Insight Society]
卷期号:12 (5): 2112-2112
标识
DOI:10.18517/ijaseit.12.5.15895
摘要

Cassava chips are used as raw materials to manufacture modified cassava flour. To produce high-quality modified cassava flour, a drying process for cassava chips is required to produce optimal water content in the range of 15-18% wb. This study aims to detect the optimal water content of cassava chips during the drying process in a hybrid hot-air tray dryer with computer vision using a convolutional neural network. Three categories of cassava chips' water content during the drying process are wet (water content of 55-70% wb), semi-dry (20-40% wb), and optimal dry (15-18% wb). In this study, the performance of four types of the pre-trained convolutional neural network, i.e., AlexNet, GoogLeNet, ResNet-50, and SqueezeNet, were compared by using different optimizers (SGDm, Adam, and RMSProp) and different learning rate values, 0.00005 and 0.0001, resulting in 24 types of experimental design. The results showed 12 convolutional neural network models with perfect validation accuracy. AlexNet with the SGDm optimizer and learning rate of 0.00005 was determined as the best model because of its stable training iteration process that experienced no fluctuations, perfect validation accuracy, specifically 100%, as well as perfect testing accuracy was 100%, and fastest training and validation process time, notably 32 minutes. This best convolutional neural network model will later be used to develop a rapid, real-time, and accurate hybrid hot-air tray dryer with computer vision to maintain cassava chip products with optimal water content.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苒苒完成签到,获得积分10
19秒前
40秒前
11发布了新的文献求助10
44秒前
XX2完成签到,获得积分10
49秒前
糊糊完成签到 ,获得积分10
55秒前
XX完成签到,获得积分10
59秒前
1分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
1分钟前
小蘑菇应助洒脱采纳,获得10
2分钟前
3分钟前
LJ_2完成签到 ,获得积分10
3分钟前
激动的似狮完成签到,获得积分10
3分钟前
完美世界应助ukz37752采纳,获得10
3分钟前
Dasein完成签到 ,获得积分10
4分钟前
souther完成签到,获得积分0
4分钟前
iris发布了新的文献求助30
4分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
4分钟前
善学以致用应助Apr9810h采纳,获得10
4分钟前
4分钟前
4分钟前
脑洞疼应助iris采纳,获得10
4分钟前
Apr9810h发布了新的文献求助10
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
jiacheng完成签到,获得积分20
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
wjw123发布了新的文献求助10
5分钟前
大方的含桃完成签到,获得积分10
6分钟前
6分钟前
QCB完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
ukz37752发布了新的文献求助10
6分钟前
102发布了新的文献求助10
6分钟前
WU发布了新的文献求助10
6分钟前
102完成签到,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4926789
求助须知:如何正确求助?哪些是违规求助? 4196365
关于积分的说明 13032501
捐赠科研通 3968693
什么是DOI,文献DOI怎么找? 2175102
邀请新用户注册赠送积分活动 1192258
关于科研通互助平台的介绍 1102661