Convolutional Neural Network to Detect the Optimal Water Content of Cassava Chips During the Drying Process

卷积神经网络 托盘 过程(计算) 人工神经网络 计算机科学 含水量 人工智能 深度学习 工艺工程 模式识别(心理学) 制浆造纸工业 工程类 机械工程 操作系统 岩土工程
作者
Yusuf Hendrawan,Bagas Rohmatulloh,Fardha Irfatul Ilmi,Muchammad Riza Fauzy,Retno Damayanti,Dimas Firmanda Al Riza,Mochamad Bagus Hermanto,Sandra Sandra
出处
期刊:International Journal on Advanced Science, Engineering and Information Technology [Insight Society]
卷期号:12 (5): 2112-2112
标识
DOI:10.18517/ijaseit.12.5.15895
摘要

Cassava chips are used as raw materials to manufacture modified cassava flour. To produce high-quality modified cassava flour, a drying process for cassava chips is required to produce optimal water content in the range of 15-18% wb. This study aims to detect the optimal water content of cassava chips during the drying process in a hybrid hot-air tray dryer with computer vision using a convolutional neural network. Three categories of cassava chips' water content during the drying process are wet (water content of 55-70% wb), semi-dry (20-40% wb), and optimal dry (15-18% wb). In this study, the performance of four types of the pre-trained convolutional neural network, i.e., AlexNet, GoogLeNet, ResNet-50, and SqueezeNet, were compared by using different optimizers (SGDm, Adam, and RMSProp) and different learning rate values, 0.00005 and 0.0001, resulting in 24 types of experimental design. The results showed 12 convolutional neural network models with perfect validation accuracy. AlexNet with the SGDm optimizer and learning rate of 0.00005 was determined as the best model because of its stable training iteration process that experienced no fluctuations, perfect validation accuracy, specifically 100%, as well as perfect testing accuracy was 100%, and fastest training and validation process time, notably 32 minutes. This best convolutional neural network model will later be used to develop a rapid, real-time, and accurate hybrid hot-air tray dryer with computer vision to maintain cassava chip products with optimal water content.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大布发布了新的文献求助20
1秒前
2秒前
3秒前
爆米花应助hdh016采纳,获得10
4秒前
4秒前
乐观尔容完成签到,获得积分10
7秒前
9秒前
英俊的铭应助着急的一江采纳,获得10
11秒前
开心的小墨墨完成签到,获得积分10
11秒前
JamesPei应助mark采纳,获得10
15秒前
某某完成签到,获得积分10
15秒前
16秒前
洗洗发布了新的文献求助30
16秒前
18秒前
Flllllll完成签到,获得积分10
19秒前
鹏程驳回了wanci应助
19秒前
英俊的铭应助标致溪流采纳,获得10
20秒前
123发布了新的文献求助10
20秒前
20秒前
21秒前
21秒前
阿巴理发布了新的文献求助10
21秒前
科研通AI2S应助自然的砖头采纳,获得10
23秒前
SUS关闭了SUS文献求助
23秒前
坤仔发布了新的文献求助30
25秒前
机灵的飞兰完成签到,获得积分10
25秒前
mark发布了新的文献求助10
26秒前
transition完成签到,获得积分10
27秒前
QQQQQQQW发布了新的文献求助10
28秒前
28秒前
edtaa完成签到,获得积分10
29秒前
希望天下0贩的0应助LLLL采纳,获得10
29秒前
科研通AI2S应助123采纳,获得10
31秒前
子车茗应助Lixueyu采纳,获得10
31秒前
hui发布了新的文献求助10
31秒前
斯文败类应助羽言采纳,获得10
32秒前
大模型应助啦啦啦采纳,获得10
33秒前
yyh发布了新的文献求助10
34秒前
呆萌的采枫完成签到,获得积分10
34秒前
初光完成签到 ,获得积分10
34秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161577
求助须知:如何正确求助?哪些是违规求助? 2812863
关于积分的说明 7897487
捐赠科研通 2471775
什么是DOI,文献DOI怎么找? 1316151
科研通“疑难数据库(出版商)”最低求助积分说明 631219
版权声明 602112