Convolutional Neural Network to Detect the Optimal Water Content of Cassava Chips During the Drying Process

卷积神经网络 托盘 过程(计算) 人工神经网络 计算机科学 含水量 人工智能 深度学习 工艺工程 模式识别(心理学) 制浆造纸工业 工程类 机械工程 操作系统 岩土工程
作者
Yusuf Hendrawan,Bagas Rohmatulloh,Fardha Irfatul Ilmi,Muchammad Riza Fauzy,Retno Damayanti,Dimas Firmanda Al Riza,Mochamad Bagus Hermanto,Sandra Sandra
出处
期刊:International Journal on Advanced Science, Engineering and Information Technology [Insight Society]
卷期号:12 (5): 2112-2112
标识
DOI:10.18517/ijaseit.12.5.15895
摘要

Cassava chips are used as raw materials to manufacture modified cassava flour. To produce high-quality modified cassava flour, a drying process for cassava chips is required to produce optimal water content in the range of 15-18% wb. This study aims to detect the optimal water content of cassava chips during the drying process in a hybrid hot-air tray dryer with computer vision using a convolutional neural network. Three categories of cassava chips' water content during the drying process are wet (water content of 55-70% wb), semi-dry (20-40% wb), and optimal dry (15-18% wb). In this study, the performance of four types of the pre-trained convolutional neural network, i.e., AlexNet, GoogLeNet, ResNet-50, and SqueezeNet, were compared by using different optimizers (SGDm, Adam, and RMSProp) and different learning rate values, 0.00005 and 0.0001, resulting in 24 types of experimental design. The results showed 12 convolutional neural network models with perfect validation accuracy. AlexNet with the SGDm optimizer and learning rate of 0.00005 was determined as the best model because of its stable training iteration process that experienced no fluctuations, perfect validation accuracy, specifically 100%, as well as perfect testing accuracy was 100%, and fastest training and validation process time, notably 32 minutes. This best convolutional neural network model will later be used to develop a rapid, real-time, and accurate hybrid hot-air tray dryer with computer vision to maintain cassava chip products with optimal water content.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
务实鞅完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
6秒前
mawenyu完成签到,获得积分10
7秒前
17完成签到,获得积分20
7秒前
高大的水壶完成签到,获得积分10
8秒前
英俊的铭应助wellyou采纳,获得10
10秒前
风中的向卉完成签到 ,获得积分10
13秒前
Mp4完成签到 ,获得积分10
13秒前
凌兰完成签到 ,获得积分10
13秒前
plain完成签到,获得积分10
14秒前
陌上花开完成签到,获得积分10
15秒前
16秒前
fg2477完成签到,获得积分10
17秒前
忙碌的数学人完成签到,获得积分10
17秒前
情怀应助Engen采纳,获得10
17秒前
HJJHJH完成签到,获得积分10
19秒前
Bob发布了新的文献求助10
20秒前
21秒前
22秒前
HJJHJH发布了新的文献求助50
23秒前
JW完成签到,获得积分10
23秒前
wanci应助张参采纳,获得10
24秒前
谦让的西装完成签到 ,获得积分10
25秒前
李演员完成签到,获得积分10
26秒前
fei菲飞完成签到,获得积分10
26秒前
28秒前
Zhaowx完成签到,获得积分10
28秒前
Theprisoners完成签到,获得积分0
28秒前
木子发布了新的文献求助30
28秒前
28秒前
下课了吧完成签到,获得积分10
29秒前
丘比特应助xialuoke采纳,获得10
30秒前
zgt01发布了新的文献求助10
32秒前
linfordlu完成签到,获得积分0
32秒前
清浅发布了新的文献求助10
33秒前
风趣的涵柏完成签到,获得积分10
34秒前
36秒前
Chen完成签到 ,获得积分10
37秒前
38秒前
木樨完成签到,获得积分10
39秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022