亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Perceptual similarity modulates effects of learning from variability on face recognition

相似性(几何) 感知 面部识别系统 模式识别(心理学) 人工智能 面子(社会学概念) 感性学习 心理学 任务(项目管理) 匹配(统计) 集合(抽象数据类型) 计算机科学 图像(数学) 数学 社会学 统计 经济 神经科学 管理 程序设计语言 社会科学
作者
Tal Honig,Adva Shoham,Galit Yovel
出处
期刊:Vision Research [Elsevier]
卷期号:201: 108128-108128 被引量:1
标识
DOI:10.1016/j.visres.2022.108128
摘要

Face recognition is a challenging classification task that humans perform effortlessly for familiar faces. Recent studies have emphasized the importance of exposure to high variability appearances of the same identity to perform this task. However, these studies did not explicitly measure the perceptual similarity between the learned images and the images presented at test, which may account for the advantage of learning from high variability. Particularly, randomly selected test images are more likely to be perceptually similar to learned high variability images, and dissimilar to learned low variability images. Here we dissociated effects of learning from variability and study-test perceptual similarity, by collecting human similarity ratings for the study and test images. Using these measures, we independently manipulated the variability between the learning images and their perceptual similarity to the test images. Different groups of participants learned face identities from a low or high variability set of images. The learning phase was followed by a face matching test (Experiment 1) or a face recognition task (Experiment 2) that presented novel images of the learned identities that were perceptually dissimilar or similar to the learned images. Results of both experiments show that perceptual similarity between study and test, rather than image variability at learning per se, predicts face recognition. We conclude that learning from high variability improves face recognition for perceptually similar but not for perceptually dissimilar images. These findings may not be specific to faces and should be similarly evaluated for other domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助沉默的早晨采纳,获得10
刚刚
大媛媛完成签到,获得积分10
1秒前
1秒前
supermaltose完成签到,获得积分10
3秒前
5秒前
柏白筠发布了新的文献求助10
6秒前
沉默的早晨完成签到,获得积分10
7秒前
震动的修洁完成签到 ,获得积分10
10秒前
10秒前
酷酷问夏完成签到 ,获得积分10
11秒前
13秒前
瘦瘦仙人掌完成签到,获得积分20
20秒前
孙远欣发布了新的文献求助10
21秒前
22秒前
人类不宜飞行完成签到 ,获得积分10
24秒前
阳光问安完成签到 ,获得积分10
25秒前
Hello应助瘦瘦仙人掌采纳,获得10
25秒前
27秒前
seven发布了新的文献求助10
28秒前
Jasper应助穿裤子的云采纳,获得50
31秒前
SciGPT应助梦华老师采纳,获得10
33秒前
大个应助孙远欣采纳,获得10
33秒前
34秒前
34秒前
35秒前
seven完成签到,获得积分10
36秒前
王炸炸完成签到,获得积分10
37秒前
善学以致用应助changeL采纳,获得10
37秒前
39秒前
小张完成签到 ,获得积分10
39秒前
nnnn发布了新的文献求助10
40秒前
xxq___发布了新的文献求助40
41秒前
41秒前
鹿芩发布了新的文献求助10
44秒前
鹿芩完成签到,获得积分10
51秒前
Sunny完成签到 ,获得积分10
52秒前
追三完成签到 ,获得积分10
54秒前
58秒前
麒麟发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544354
求助须知:如何正确求助?哪些是违规求助? 3121554
关于积分的说明 9347855
捐赠科研通 2819801
什么是DOI,文献DOI怎么找? 1550461
邀请新用户注册赠送积分活动 722526
科研通“疑难数据库(出版商)”最低求助积分说明 713273